Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2147 results about "Hybrid material" patented technology

Hybrid materials are composites consisting of two constituents at the nanometer or molecular level. Commonly one of these compounds is inorganic and the other one organic in nature. Thus, they differ from traditional composites where the constituents are at the macroscopic (micrometer to millimeter) level. Mixing at the microscopic scale leads to a more homogeneous material that either show characteristics in between the two original phases or even new properties.

Hybrid anode compositions for lithium ion batteries

ActiveUS20090117466A1Superior multiple-cycle behaviorSmall capacity fadeAlkaline accumulatorsConductive materialHybrid materialSodium-ion battery
The present invention provides an exfoliated graphite-based hybrid material composition for use as an electrode, particularly as an anode of a lithium ion battery. The composition comprises: (a) micron- or nanometer-scaled particles or coating which are capable of absorbing and desorbing alkali or alkaline metal ions (particularly, lithium ions); and (b) exfoliated graphite flakes that are substantially interconnected to form a porous, conductive graphite network comprising pores, wherein at least one of the particles or coating resides in a pore of the network or attached to a flake of the network and the exfoliated graphite amount is in the range of 5% to 90% by weight and the amount of particles or coating is in the range of 95% to 10% by weight. Also provided is a lithium secondary battery comprising such a negative electrode (anode). The battery exhibits an exceptional specific capacity, excellent reversible capacity, and long cycle life.
Owner:SAMSUNG ELECTRONICS CO LTD

Hybrid organic-inorganic planar optical waveguide device

InactiveUS6511615B1Reduce stressStress induced polarization effects can be minimizedOptical articlesGlass shaping apparatusOptical radiationSilanes
A planar optical device is formed on a substrate. The device comprises an array of waveguide cores which guide optical radiation. A cladding layer is formed contiguously with the array of waveguide cores to confine the optical radiation to the array of waveguide cores. At least one of the array of waveguide cores and cladding layer is an inorganic-organic hybrid material that comprises an extended matrix containing silicon and oxygen atoms with at least a fraction of the silicon atoms being directly bonded to substituted or unsubstituted hydrocarbon moieties. This material can be designed with an index of refraction between 1.4 and 1.55 and can be deposited rapidly to thicknesses of up to 40 microns. In accordance with another embodiment of the invention, a method for forming a planar optical device obviates the need for a lithographic process. Illustratively, a method for forming an array of cores comprises the steps of: (1) preparing a waveguide core composition precursor material comprising at least one silane and a source of hydrocarbon moiety, (2) partially hydrolyzing and polymerizing the waveguide core precursor material to form a waveguide core composition, (3) using a mold, forming an array of waveguide cores comprising the waveguide core composition, and (4) completing hydrolysis and polymerization of the waveguide core composition under conditions effective to form an inorganic-organic hybrid material that comprises an extended matrix containing silicon and oxygen atoms with at least a fraction of the silicon atoms being directly bonded to substituted or unsubstituted hydrocarbon moieties. A cladding layer is then deposited over the array of waveguide cores. The use of the mold to pattern the array of waveguide cores obviates the need for a lithographic process.
Owner:CORNING INC

Curable high refractive index compositions

The invention provides an organic / inorganic hybrid material with a high refractive index at telecommunications wavelengths. Energy curable compositions of the present invention include condensed metal oxide nanoparticles, a high refractive index organometallic coupling agent, an energy curable organometallic coupling agent, and a high refractive index monomer or oligomer. Polymeric materials of the present invention include condensed metal oxide nanoparticles having a mixture of organometallic coupling agents covalently bound to the exterior surface of the nanoparticles and a high refractive index solid polymer matrix, wherein the mixture of organometallic coupling agents includes a high refractive index coupling agent, and a coupling agent covalently bound to the polymer matrix. The materials of the present invention are useful in making optical devices for telecommunications applications.
Owner:CORNING INC

Graphene hybrid material and method for preparing same using chemical vapor deposition

Disclosed herein are a graphene hybrid material and a method for preparing the graphene hybrid material, the graphene hybrid material comprising: a matrix having lattice planes disconnected on a surface thereof; and layers of graphene which are epitaxially grown along the lattice planes disconnected on the surface of the matrix such that the layers of graphene are oriented perpendicularly to the matrix, and which are spaced apart from each other and layered on the matrix in the same shape. The graphene hybrid material can be usefully used in the fields of next-generation semiconductor devices, biosensors, electrochemical electrodes and the like.
Owner:KOREA INST OF SCI & TECH

Preparation of surface functionalized porous organic-inorganic hybrid materials or mesoporous materials with coordinatively unsaturated metal sites and catalytic applications thereof

Disclosed herein is a method of surface-functionalizing a porous organic-inorganic hybrid material or a organic-inorganic mesoporous material, in which organic substances, inorganic substances, ionic liquids and organic-inorganic hybrid substances are selectively functionalized on the coordinatively unsaturated metal sites of a porous organic-inorganic hybrid material or organic-inorganic mesoporous material, and thus the porous organic-inorganic hybrid material can be used for adsorbents, gas storage devices, sensors, membranes, functional thin films, catalysts, catalytic supports, and the like, and the applications of the surface-functionalized porous organic-inorganic hybrid material prepared using the method to catalytic reactions.
Owner:KOREA RES INST OF CHEM TECH

Three-dimensional battery with hybrid nano-carbon layer

A Li-ion battery cell is formed from deposited thin-film layers and comprises a high-surface-area 3-D battery structure. The high-surface-area 3-D battery structure includes a fullerene-hybrid material deposited onto a surface of a conductive substrate and a conformal metallic layer deposited onto the fullerene-hybrid material. The fullerene-hybrid material is made up of chains of fullerene “onions” linked by carbon nanotubes to form a high-surface-area layer on the conductive substrate and has a “three-dimensional” surface. The conformal metallic layer acts as the active anode material in the Li-ion battery and also has a high surface area, thereby forming a high-surface-area anode. The Li-ion battery cell also includes an ionic electrolyte-separator layer, an active cathodic material layer, and a metal current collector for the cathode, each of which is deposited as a conformal thin film.
Owner:APPLIED MATERIALS INC

Organic-inorganic hybrid super-hydrophilic coating as well as preparation method and application thereof

The invention discloses an organic-inorganic hybrid super-hydrophilic coating as well as a preparation method and an application thereof. The preparation method comprises: firstly carrying out hydrolysis condensation polymerization by a sol-gel method with ethyl orthosilicate used as a precursor, hydrochloric acid used as a catalyst, ethanol used as a solvent, a silane coupling agent used as a modifier and a proper amount of water to obtain a modified silica sol, then carrying out free radical polymerization on the modified silica sol and reactive hydrophilic monomers to obtain an organic-inorganic hybrid material, and carrying out solvent replacement to obtain an aqueous organic-inorganic hybrid super-hydrophilic coating. The coating is coated on plastics, glass or metal substrates through dipping or brushing to form a coating layer, the coating layer has a contact angle with water less than 5 degrees, the adhesion force with the substrates of level-0 and the hardness greater than 6H, and water drops can spread out quickly on the coating layer.
Owner:SOUTH CHINA UNIV OF TECH

Truss Cable Semi-submersible Floater for Offshore Wind Turbines and Construction Methods

Truss cable semi-submersible floater for offshore wind turbines and construction methods are provided. A floating system includes a hull, a tensioned cable system, and a tower. The hull includes vertical buoyant columns with one column at the center of the pattern, larger size column base tanks, and a truss system, all of which are coupled to each other for supporting the tower and wind turbines. The column can be made of hybrid materials, including steel and composite-concrete. The steel section and the composite-concrete section of the column can be connected by grouting. The tensioned cable system including upper, lower, and diagonal tensioned cables to connect the column, the column base, and the tower to reduce the bending moments and improve stability, strength and dynamic performance of the hull structure.
Owner:WANG JIN +1

Insulating glass (IG) or vacuum insulating glass (VIG) unit including light source, and/or methods of making the same

Certain example embodiments of this invention relate to techniques for improving the performance of Lambertian and non-Lambertian light sources. In certain example embodiments, this is accomplished by (1) providing an organic-inorganic hybrid material on LEDs (which in certain example embodiments may be a high index of refraction material), (2) enhancing the light scattering ability of the LEDs (e.g., by fractal embossing, patterning, or the like, and / or by providing randomly dispersed elements thereon), and / or (3) improving performance through advanced cooling techniques. In certain example instances, performance enhancements may include, for example, better color production (e.g., in terms of a high CRI), better light production (e.g., in terms of lumens and non-Lambertian lighting), higher internal and / or external efficiency, etc.
Owner:GUARDIAN GLASS LLC

Micro-fabricated Catheter Devices Formed With Hybrid Materials

A catheter device comprising: a micro-fabricated elongated outer member having an outer surface and an interior surface forming a lumen extending from a proximal end to a distal end, wherein said outer member is formed from two or more different stock materials, and embodiments thereof.
Owner:SCIENTIA VASCULAR INC

Low temperature curing high temperature resistant inorganic / organic hybridization epoxy adhesive and preparation thereof

InactiveCN101440268AImprove brittlenessImprove high temperature heat aging resistanceInorganic adhesivesEpoxy resin adhesivesCouplingLow temperature curing
The invention discloses a low-temperature curing high temperature-resistant inorganic/organic hybrid epoxy adhesive and a preparation method thereof, which relate to an inorganic/organic hybrid epoxy adhesive and a preparation method thereof. The invention solves the problems that inorganic/organic hybrid epoxy adhesive prepared by the prior art has poor high-temperature thermal aging resistance and needs high curing temperature. The low-temperature curing high temperature-resistant inorganic/organic hybrid epoxy adhesive is prepared by an epoxy resin, an epoxy resin low-temperature curing agent, a coupling agent, an inorganic active hybrid material and a dispersant. The preparation method comprises the following steps: the epoxy resin, the epoxy resin low-temperature curing agent and the coupling agent are mixed and stirred evenly, and then the inorganic active hybrid material and the dispersant are added into the mixture to be stirred evenly to obtain the low-temperature curing high temperature-resistant inorganic/organic hybrid epoxy adhesive. The low-temperature curing high temperature-resistant inorganic/organic hybrid epoxy adhesive has high high-temperature bonding strength, good high-temperature thermal aging performance and low curing temperature. The low-temperature curing high temperature-resistant inorganic/organic hybrid epoxy adhesive has the advantages of simple production technology, convenient operation and broad application.
Owner:INST OF PETROCHEM HEILONGJIANG ACADEMY OF SCI

Reversible Adhesive Compositions and Related Methods

The disclosure relates to reversible bonded structural joints using active adhesive compositions that can allow for dis-assembly, repair, and re-assembly. The disclosure is particularly directed to the adhesive composition material, irrespective of the type of the substrate(s) being joined. The adhesive composition can include any thermoplastic adhesive material that can be remotely activated for targeted heating of just the adhesive composition (e.g., and not the surrounding substrates being joined) via the inclusion of electromagnetically excitable particles in the adhesive composition. The substrates can be any metal material, any composite material, any hybrid material, or otherwise. The disclosed adhesive compositions allow for recyclability of parts at the end of their lifetime and repair / replacement of parts during their lifetime.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV

Low-stress epoxy/organic silicon/POSS nano hybrid material, and preparation method and application thereof

The invention relates to the technical fields of photoelectricity and chemical industry, in particular to a low-stress epoxy / organic silicon / POSS nano hybrid material, and a preparation method and application thereof. The epoxy / organic silicon / POSS nano hybrid material comprises (a) an epoxy resin, (b) a polyorganosiloxane, (c) a cage-type polysilsesquioxane (POSS), (d) an epoxy hardener, (e) non-essential silane oxycompound and (f) non-essential assistants, wherein the polyorganosiloxane contains epoxy groups and silane oxygen groups. The cured nano hybrid system has excellent reticular cross-linked structure and does not have microphase separation. The epoxy / organic silicon / POSS nano hybrid material has the advantages of high mechanical strength, favorable heat resistance, favorable cohesive property, high chemical stability, favorable ultraviolet aging resistance, favorable optical transparency and other excellent properties, has the functions of low internal stress and pressure buffer, and can be used as an LED packaging material, optical protection material, circuit protection coating material, adhesive paint and the like.
Owner:FUDAN UNIV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products