Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

7168results about How to "Avoid defects" patented technology

Wafer transfer blade

Projections 22 of the blade 16 provided on a blade surface in a wafer-loading region 18b of a body 18 support a wafer W loaded on the blade surface 18a. Since the projections 22 have microgrooves formed by surface roughening the wafer W is retained on the projections 22 with a suppressed displacement. The blade 16 has a simple structure that retains the wafer W without vacuum suction and has no receiving hole to retain the wafer W in the body 18 of the blade 16. This can effectively prevent formation of defects on the wafer W.
Owner:APPLIED MATERIALS INC

Method for preparing graphene compounds and graphene oxide compounds with high efficiency

The invention relates to a method for preparing graphene compounds and graphene oxide compounds with high efficiency, relating to the method for preparing the graphene compounds and the graphene oxide compounds. The invention solves the problems of easy composition of graphene or graphene oxide per se and many process steps, higher cost and difficult dispersedness for preparing the graphene compounds and the graphene oxide compounds by the traditional method at the same time. The invention adopts a mechanical stripping method to obtain the graphene compounds and the graphene oxide compounds. In the invention, an automatic machine is utilized, solid particles are used for assisting stripping, the contact area and the stripping number of the stripping process are greatly increased, and carbon material powder experiences a lot of stripping processes through the action of shear and impact, thereby obviously improving the stripping efficiency and achieving the purpose of uniform dispersedness to the composites. The method is suitable for industrial mass production of the graphene compounds and the graphene oxide compounds.
Owner:HARBIN INST OF TECH

Semiconductor device

A display device includes a pixel portion in which a pixel is arranged in a matrix, the pixel including an inverted staggered thin film transistor having a combination of at least two kinds of oxide semiconductor layers with different amounts of oxygen and having a channel protective layer over a semiconductor layer to be a channel formation region overlapping a gate electrode layer and a pixel electrode layer electrically connected to the inverted staggered thin film transistor. In the periphery of the pixel portion in this display device, a pad portion including a conductive layer made of the same material as the pixel electrode layer is provided. In addition, the conductive layer is electrically connected to a common electrode layer formed on a counter substrate.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor light emitting device

A high external quantum efficiency is stably secured in a semiconductor light emitting device. At least one recess and / or protruding portion is created on the surface portion of a substrate for scattering or diffracting light generated in a light emitting region. The recess and / or protruding portion has a shape that prevents crystal defects from occurring in semiconductor layers.
Owner:NICHIA CORP

Semiconductor device

A method for manufacturing a semiconductor device, including the steps of: forming a shielding film 38 on a first insulating film 37; sequentially forming a second insulating film 39 and an amorphous semiconductor film 40 on the shielding film 38; melting the amorphous semiconductor film 40 at least in portions to be channels of thin-film transistors by irradiating an energy beam onto the amorphous semiconductor film 40, and converting the amorphous semiconductor film 40 into a polycrystalline semiconductor film 41; sequentially forming a gate insulating film 43a and a gate electrode 44a on the polycrystalline semiconductor film 41 on the channels; and forming source and drain regions 41a in the polycrystalline semiconductor film 41 on sides of the gate electrode 44a, and forming a TFT 60 by use of the source and drain regions 41a, the gate insulating film 43a, and the gate electrode 44a.
Owner:FUJITSU SEMICON LTD

Display device

A protective circuit includes a non-linear element, which includes a gate electrode, a gate insulating layer covering the gate electrode, a pair of first and second wiring layers whose end portions overlap with the gate electrode over the gate insulating layer and in which a second oxide semiconductor layer and a conductive layer are stacked, and a first oxide semiconductor layer which overlaps with at least the gate electrode and which is in contact with the gate insulating layer, side face portions and part of top face portions of the conductive layer and side face portions of the second oxide semiconductor layer in the first wiring layer and the second wiring layer. Over the gate insulating layer, oxide semiconductor layers with different properties are bonded to each other, whereby stable operation can be performed as compared with Schottky junction. Thus, the junction leakage can be decreased and the characteristics of the non-linear element can be improved.
Owner:SEMICON ENERGY LAB CO LTD

Sealing structure for display device

In a display device formed by adhering substrates facing one another using a seal, a buffer layer is disposed between the seal and a substrate to prevent separation between the substrates. Specifically, for example, a display region is configured by covering switching elements with a planarizing insulating film for planarization, then forming, in order, pixel electrodes, an emissive layer, and a counter electrode. The planarizing insulating film is extended beyond the display region to an area under the seal. The planarizing insulating film functions as the buffer layer to absorb the stress generated during curing of the seal, thereby preventing separation between the substrate and the protective casing.
Owner:SANYO ELECTRIC CO LTD

Display panel and display device

A display panel includes (i) a first substrate and a second substrate, which face each other, (ii) a medium layer being sandwiched between the first and second substrate, and (iii) first electrodes and second electrodes being provided on that side of the first substrate which faces the second substrate, the display panel performing display operation by generating an electric field between the first and second electrodes. The display panel is configured such that the medium layer comprises a medium that is optically isotropic when no electric field is applied thereon, and whose optical anisotropy magnitude is changeable by and according to the electric field applied thereon; and the first and second electrodes are transparent electrodes, and a distance between the first and the second electrodes is shorter than a distance between the first substrate and second substrate. This configuration attains gives the display panel high response speed and high transmissivity.
Owner:SHARP KK

Display device

A display device includes a pixel portion in which a pixel electrode layer is arranged in a matrix, and an inverted staggered thin film transistor having a combination of at least two kinds of oxide semiconductor layers with different amounts of oxygen is provided corresponding to the pixel electrode layer. In the periphery of the pixel portion in this display device, a pad portion is provided to be electrically connected to a common electrode layer formed on a counter substrate through a conductive layer made of the same material as the pixel electrode layer. One objection of our invention to prevent a defect due to separation of a thin film in various kinds of display devices is realized, by providing a structure suitable for a pad portion provided in a display panel.
Owner:SEMICON ENERGY LAB CO LTD

Turboalternator with hydrodynamic bearings

This invention provides a small, high efficiency, oil-free turbine-driven alternator (i.e. turboalternator) suitable for conversion of stored energy in a process gas to electrical power, facilitating recapture of energy during operation that would otherwise be wasted. The turboalternator includes a turbine and a generating device operatively connected together by a rotating shaft capable of rotating at high speeds. The rotating shaft is supported by foil gas bearings.
Owner:R & D DYNAMICS

Method and apparatus for producing carbon nanotubes

A method and apparatus for catalytic production of carbon nanotubes. Catalytic particles are exposed to different process conditions at successive stages wherein the catalytic particles do not come in contact with reactive (catalytic) gases until preferred process conditions have been attained, thereby controlling the quantity and form of carbon nanotubes produced. The method also contemplates methods and apparatus which recycle and reuse the gases and catalytic particulate materials, thereby maximizing cost efficiency, reducing wastes, reducing the need for additional raw materials, and producing the carbon nanotubes, especially SWNTs, in greater quantities and for lower costs.
Owner:THE BOARD OF RGT UNIV OF OKLAHOMA

Semiconductor device and method for manufacturing the same

Disclosed is a semiconductor device comprising a thin film transistor and wirings connected to the thin film transistor, in which the thin film transistor has a channel formation region in an oxide semiconductor layer, and a copper metal is used for at least one of a gate electrode, a source electrode, a drain electrode, a gate wiring, a source wiring, and a drain wiring. The extremely low off current of the transistor with the oxide semiconductor layer contributes to reduction in power consumption of the semiconductor device. Additionally, the use of the copper metal allows the combination of the semiconductor device with a display element to provide a display device with high display quality and negligible defects, which results from the low electrical resistance of the wirings and electrodes formed with the copper metal.
Owner:SEMICON ENERGY LAB CO LTD

Tailoring material composition for optimization of application-specific switchable holograms

The present invention offers control over—and the ability to optimize—the performance parameters of switchable holograms. The present invention offers the ability to tailor the properties of a hologram to a desired application and thus make application-specific holograms. The invention relates to polymer-dispersed liquid crystal materials subject to control and optimization of the performance parameters of switchable holograms. Such variability allows tailoring the properties to application-specific devices. Specifically, the present invention provides an improved polymer-dispersed liquid crystal system that allows variation of: 1) haze, 2) switching voltage, 3) electrical power dissipation, 4) switching stability (voltage creep), 5) switching contrast ratio (range), 6) dynamic stability, and 7) the operating temperature range.
Owner:LEIDOS

Method of manufacturing integrated circuit device including recessed channel transistor

A method according to some embodiments of the invention includes defining an active region by forming a trench device isolation region on an integrated substrate, forming a mask pattern that exposes a channel sub-region of the active region and the trench device isolation region adjacent to the channel sub-region, etching the trench device isolation region, which is exposed by the mask pattern, to be recessed to a first depth using the mask pattern as an etch mask, etching the channel sub-region to form a gate trench having a second depth that is deeper than the first depth using the mask pattern as an etch mask, and forming a recess gate that fills the gate trench.
Owner:SAMSUNG ELECTRONICS CO LTD

Heat spreader and semiconductor device and package using the same

A semiconductor device and package has a heat spreader directly disposed on the reverse surface of the semiconductor device. This heat spreader includes a diamond layer or a layer containing diamond and ceramics such as silicon carbide and aluminum nitride. The heat spreader is directly formed on a substrate for the semiconductor device. In particular, the heat spreader is composed of a diamond layer and one or two metal or ceramic members, which are bonded to the diamond layer with one or two polymer adhesive layers. This diamond layer has a fiber structure across the thickness or a microcrystalline structure. Cilia are formed on a surface of the diamond layer facing the one or two metal or ceramic members.
Owner:KOBE STEEL LTD

Application interface rendering method and apparatus

The application discloses an application interface rendering method and apparatus. An SDK package is arranged in a client of an application. The SDK package comprises a rendering engine. A first correspondence between component information defined in interface data and a native component in a current terminal device is stored in the rendering apparatus. The method comprises: completing the following operations through the rendering engine: when a request of displaying a specified interface of the application is received, requesting for interface data of the specified interface of the application from a server; after the interface data returned by the server are received, analyzing the interface data to obtain the component information defined in the interface data; according to the first correspondence, mapping the component information defined in the interface data into the native component in the current terminal device; and rendering the native component. Through the application interface rendering method and apparatus, users can be enabled to use latest functions of applications more timely, and various defects of a hybird scheme are avoided.
Owner:ALIBABA GRP HLDG LTD

Light-emitting device, method for manufacturing light-emitting device, and electronic apparatus

A light-emitting device includes a base; a plurality of first electrodes; a partition having a plurality of openings located at positions corresponding to the first electrodes; organic functional layers each arranged in the corresponding openings; a second electrode covering the partition and the organic functional layers; an organic buffer layer covering the second electrode; a gas barrier layer covering the organic buffer layer; and an intermediate protective layer, disposed between the organic buffer layer and the gas barrier layer, having an elasticity which is greater than that of the organic buffer layer and which is less than that of the gas barrier layer. These layers and electrodes are arranged on or above the base.
Owner:SEIKO EPSON CORP

Color filters for liquid crystal display panels and method of producing the same

A color filter for liquid crystal display panels. The filter includes a transparent substrate with a metal layer formed thereon, and a first color layer, a second colour layer and a third color layer are integrally formed with the same metal layer. The invention also provides a method for producing the color filter described above. The method applies the theory of oxidizing metal layers by repeatedly exposing and oxidizing to form a color filter having multiple integrally formed colors. Depending on requirements, the color filter of the invention also includes the black matrix that is often included in liquid crystal display panels.
Owner:IND TECH RES INST

Suspension board with circuit and procuding method thereof

A producing method of a suspension board with circuit that can permit a terminal portion to be formed by electrolysis plating without exposing a conductor layer to outside and also can reduce the number of processes, and the suspension board with circuit produced by the same producing method. After an insulating base layer 3 is formed on a suspension board 2 in a specific pattern in which a second opening 12 is formed, a thin metal film 13 is formed on an entire surface of the insulating base layer 3 and on a surface of the suspension board 2 including the second opening 12 exposed from the insulating base layer 3.Then, a conductor layer 4 is formed in the form of a wired circuit pattern on the thin metal film 13. Thereafter, the insulating cover layer 10 is formed in such a manner that a pad opening 11 is formed in the insulating cover layer 10 and then a pad portion 16 is formed in the pad opening 11 using the suspension board 2 as a lead portion of the electrolysis plating. Thereafter, a first opening 25 larger than the second opening 12 is formed in the suspension board 2 at a portion thereof corresponding to the second opening 12.
Owner:NITTO DENKO CORP

Power semiconductor device

A power semiconductor device includes power semiconductor elements joined to wiring patterns of a circuit substrate, cylindrical external terminal communication sections, and wiring means for forming electrical connection between, for example, the power semiconductor elements and the cylindrical external terminal communication sections. The power semiconductor elements, the cylindrical external terminal communication sections, and the wiring means are sealed with transfer molding resin. The cylindrical external terminal communication sections are arranged on the wiring patterns so as to be substantially perpendicular to the wiring patterns, such that external terminals are insertable and connectable to the cylindrical external terminal communication sections, and such that a plurality of cylindrical external terminal communication sections among the cylindrical external terminal communication sections are arranged two-dimensionally on each of wiring patterns that act as main circuits.
Owner:MITSUBISHI ELECTRIC CORP

Plasma reactor electrode

A plasma reactor electrode, a method of making it, and a plasma reaction chamber employing the inventive electrode, wherein the electrode is configured to provide superior thermal conductivity characteristics. In the inventive electrode, first and second plates are connected by pins. In one embodiment, the pins, and the first and second plates are made of the same material, such as aluminum. The connection of the pins through the first and second plates provides superior thermal conductivity between the first and second plates. A dielectric cover, which may be made of ceramic or quartz, may be added below the lower plate. To form a showerhead assembly, holes are formed in the lower plate, and also in the dielectric cover, in alignment with a plenum chamber, to provide appropriate inlet for process gas into the chamber.
Owner:APPLIED MATERIALS INC

Method for deposition of high-performance coatings and encapsulated electronic devices

A method is disclosed for forming leak-free coatings on polymeric or other surfaces that provide optical functions or protect underlying layers from exposure to oxygen and water vapor and do not crack or peel in outdoor environments. This method may include both cleaning and surface modification steps preceding coating. The combined method greatly reduces defects in any barrier layer and provides weatherability of coatings. Specific commercial applications that benefit from this include manufacturing of photovoltaic devices or organic light emitting diode devices (OLED) including lighting and displays.
Owner:AIXTRON AG

Stretch wovens with a control yarn system

An article including a woven fabric comprising warp yarns and weft yarns, wherein at least one of either the warp yarns or the weft yarns includes: (a) a corespun elastic base yarn having a denier and including staple fiber and an elastic fiber core; and (b) a separate control yarn selected from the group consisting of a single filament yarn, a multiple filament yarn, a composite yarn, and combinations thereof; having a denier greater than zero to about 0.8 times the denier of the corespun elastic base yarn; wherein the woven fabric includes (1) a ratio of corespun base yarn ends to control yarn ends of up to about 6:1; or (2) a ratio of corespun base yarn picks to control yarn picks of up to about 6:1; or (3) both a ratio of corespun base yarn ends to control yarn ends of up to about 6:1; and a ratio of corespun base yarn picks to control yarn picks of up to about 6:1.
Owner:THE LYCRA CO LLC

Preparation method of ZrO2 nanotube supported B2O3 catalyst

The invention discloses a preparation method of a ZrO2 nanotube supported B2O3 catalyst, which comprises the following steps of: preparing aqueous solution containing NH4F with the concentration of 0.5 to 1.0%, boride with the concentration of 0.1 to 6% and (NH4)2SO4 with the concentration of 5 to 12%, taking the aqueous solution as reaction medium, taking a zirconium plate as anode and a platinum plate as cathode with the spacing of 1.5cm therebetween, adopting 10-30V direct current for anode oxidation for 3 to 5 hours at room temperature, stopping reaction, drying and roasting the resultant oxide to obtain the catalyst, wherein all the concentration percents are mass percents. The B2O3 / ZrO2 catalyst prepared according to the method of the invention has large specific surface area and volume simultaneously, and when the specific surface area thereof is the same as that of nano powder, the volume is ten thousand times as much as that of nano powder, thus the contradiction between specific surface area and volume of powder carrier is settled, and the defects caused by the fact that powder ZrO2 supports the B2O3 catalyst can be overcome.
Owner:HEBEI UNIV OF TECH

Tailoring material composition for optimization of application-specific switchable holograms

The process described herein offers the optimizing of performance parameters of holograms, such as reducing scattering effects in a polymer-dispersed liquid crystal optical element. In the process, an interfacial tension agent is added to a polymer-dispersed liquid crystal material. The polymer-dispersed liquid crystal material has at least one acrylic acid monomer, at least one type of liquid crystal material, a photoinitiator dye, and a co-initiator. The polymer-dispersed liquid crystal material is subjected to a polymerization. The interfacial tension agent reduces the size of liquid crystal droplets formed within the polymer-dispersed liquid crystal optical element during polymerization.
Owner:LEIDOS

Tape carrier, semiconductor apparatus, and semiconductor module apparatus

A tape carrier of the present invention includes an insulating tape and a wiring pattern formed on the insulating tape. The wiring pattern includes a connecting section via which the wiring pattern is connected to a bump electrode. The connecting section is provided at a part of an overlap part of the wiring pattern, which overlap part overlaps a semiconductor device when the semiconductor device is mounted on the wiring pattern. The connecting section of the wiring pattern is smaller in wiring width than the remaining part of the overlap part, which remaining part is other than the connecting section.
Owner:SHENZHEN TOREY MICROELECTRONIC TECH CO LTD

Conductive silicon compound, its preparation and negative electrode material of non-aqueous electrolyte secondary battery

A conductive silicon composite in which particles having a structure in which crystallites of silicon are dispersed in silicon dioxide are coated on their surfaces with carbon affords satisfactory cycle performance when used as the negative electrode material in a non-aqueous electrolyte secondary cell.
Owner:SHIN ETSU CHEM IND CO LTD

Method for end-capping polycarbonate resins and composition for use in same

InactiveUS6500914B1High yieldFast cappingEnd-groupPolycarbonate
A method for end-capping polycarbonate resins, comprising the step of processing a mixture comprising a polycarbonate having free hydroxyl-end groups and an end-capping reagent in a melt transesterification reaction to produce a polycarbonate resin, wherein the end-capping reagent comprises a mixture of:(a) at least one species of a symmetrical activated aromatic carbonate, and (b) at least one species of a symmetrical non-activated aromatic carbonate, whereby said end-capping reagent reacts with at least some of the free hydroxyl end-groups of the polycarbonate to produce an end-capped polycarbonate resin.
Owner:SABIC GLOBAL TECH BV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products