Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

4892 results about "Compatibilization" patented technology

Compatibilization in polymer chemistry is the addition of a substance to an immiscible blend of polymers that will increase their stability. Polymer blends are typically described by coarse, unstable phase morphologies. This results in poor mechanical properties. Compatibilizing the system will make a more stable and better blended phase morphology by creating interactions between the two previously immiscible polymers. Not only does this enhance the mechanical properties of the blend, but it often yields properties that are generally not attainable in either single pure component.

Bioabsorbable and biocompatible polyurethanes and polyamides for medical devices

Absorbable polyurethanes, polyamides and polyester urethanes prepared from at least one compound selected from:
or the diamines and diisocyanates thereof, wherein each X represents a member independently selected from —CH2COO— (glycolic acid moiety), —CH(CH3)COO— (lactic acid moiety), —CH2CH2OCH2COO— (dioxanone), —CH2CH2CH2CH2CH2COO— (caprolactone moiety), —(CH2)yCOO— where y is one of the numbers 2, 3, 4 or 6-24 inclusive, and —(CH2CH2O)z′CH2COO— where z′ is an integer between 2 and 24, inclusive; each Y represents a member independently selected from —COCH2O— (glycolic ester moiety), —COCH(CH3)O— (lactic ester moiety), —COCH2OCH2CH2O— (dioxanone ester), —COCH2CH2CH2CH2CH2O— (caprolactone ester), —CO(CH2)mO— where m is an integer between 2, 3, 4 or 6-24 inclusive, —COCH2O(CH2CH2O)n— where n is an integer between 2 and 24, inclusive; R′ is hydrogen, benzyl or an alkyl group, the alkyl group being either straight-chained or branched; p is an integer between 1 and 4, inclusive; and Rn represents one or more members selected from H, alkoxy, benzyloxy, aldehyde, halogen, carboxylic acid and —NO2, which is attached directly to an aromatic ring or attached through an aliphatic chain. Absorbable polymers prepared from these compounds are useful for drug delivery, tissue engineering, tissue adhesives, adhesion prevention and other implantable medical devices.
Owner:BEZWADA BIOMEDICAL LLC

Biocompatible materials

InactiveUS20050053642A1Material nanotechnologyPharmaceutical containersBiological interactionChemisorption
The present invention teaches a novel approach of creating biocmpatible surfaces, said surfaces being capable of functionally interact with biological material. SAid biocompatible surfaces comrise at least two comonents, such as a hydrophobic substratum and a macromolecule of hydrophilic nature, which, in a cooperativity, form together the novel biocoompatible surfaces. The novel approach is ased on contacting said hydrophobic substratum with a laterally patterned monomolecular layer of said hydrophilic and flexible macromolecules, exhibiting a pronounced excluded volume. The htus formed two component surface is, in respect to polarity and morphology, a molecularly heterogeneous surface. Structural features of said macromolecular monolayer (as e.g. the layer thickness or its lateral density) are determined by: i) the structural features of the layer forming macromolecules (as e.g. their MW or their molecular architecture) and ii) the method of creating said monomolecular layer (as e.g. by physi- or chemisorbing, or by chemically binding said macromolecules). The structural features of the layer forming macromolecules(s) is in turn determined by synthesis. AMount and conformation and thus also biological activity of biological material (as e.g. polypeptides) which contact the novel biocompatible surface, is determined and maintained by the cooperative action of the underlying hydrophobic substratum and the macromolecular layer. In this way it becomes possible to maintain and control biological interactions between said contacted polypeptides and other biological compounds as e.g. cells, antibodies and the like. Consequently, the present invention aims to reduce and/or eliminate the deactivation and/or denaturation associated with the contacting of polypeptides and/or other biological material to a hydrophobic substratum surface.
Owner:BIOSURF APS

Surgical adhesive compostion and process for enhanced tissue closure and healing

A surgical tissue adhesive composition contains at least one 1,1-disubstituted electron-deficient olefin macromer. The adhesive composition of the invention has improved biocompatibility as well as controlled biodegradation characteristics and bioactivity. Adhesive co-monomer compositions contain at least one macromer with a pendant oligomer, polymer, or peptide chain as an acrylic ester of the reactive olefin. The polymers formed therefrom have a grafted brush-like nature. The composition is particularly useful for creating an adhesive bond at the junction of living tissue in surgical applications. The adhesive composition may further comprise co-monomer, co-macromer, cross-linker, or inter-penetrating polymer compounds containing peptide sequences that are bioactive or enzyme responsive. The peptide sequences are selected to promote tissue infiltration and healing in a particular biological tissue. The sequences may contain specific cell-adhesion, cell-signaling, and enzyme-cleavable domains. Furthermore, a degradable filler material may be included in the composition to create a reinforced composite. The filler preferably has a higher degradation rate than the polymer matrix, generating porosity upon degradation. The adhesive may further contain entrapped or incorporated drugs or biologics, including antibiotics or growth factors. The adhesive can be used to bind together the edges of living tissues during surgical procedures. The cured composition provides interfacial bonding and mechanical fixation while promoting tissue infiltration and replacement of the adhesive polymer.
Owner:POLLOCK POLYMER GROUP

Method for preparing graphene modified by silane coupling agent

The invention discloses a method for preparing graphene modified by a silane coupling agent. The method includes adding graphite oxide and the silane coupling agent into reaction solvent, controlling the temperature to range from 0 DEG C to 90 DEG C, realizing stirred reaction for 0.1 to 72 hours and obtaining graphite oxide grafted with the silane coupling agent; adding the graphite oxide grafted with the silane coupling agent into reduction solvent, adding a reducer into the reduction agent, controlling the temperature to range from 0 DEG C to 90 DEG C, realizing stirred reduction reaction for 0.1 to 72 hours and obtaining graphene liquor grafted with the silane coupling agent; and treating the graphene liquor grafted with the silane coupling agent and then obtaining solid graphene powder modified by the silane coupling agent. The mass ratio of the graphite oxide and the silane coupling agent is 1:0.1-5. The technological method is simple and speedy, requirements on reaction conditions are low, a process is easy to control, and the graphene modified by the silane coupling agent can be obtained without catalysts or multi-step complicated reaction. The graphene is fine in polymer compatibility and simple in preparation and can be widely applied to fields of preparation of graphene modified polymers and novel electrochemical electrodes and novel optical and conductive materials, raw materials are easily available, and a product has good dispersibility in partial organic solvent.
Owner:NANJING UNIV

High-thermal-diffusion-coefficient high molecular material and preparation method thereof

InactiveCN104559148AImprove thermal conductivityGood radiation cooling performancePolymer scienceAntioxidant
The invention discloses a high-thermal-diffusion-coefficient high molecular material and a preparation method thereof. The high-thermal-diffusion-coefficient high molecular material is prepared from the following steps: 20-65 parts of matrix resin, 35-65 parts of high-thermal diffusion heat-conducting filler, 0.1-5 parts of carbon fiber composite, 0.1-10 parts of a flexibilizer, 0.1-2 parts of coupling agent, 0.1-2 parts of antioxidant and 0.1-15 parts of other auxiliaries. According to the high-thermal-diffusion-coefficient high molecular material, the heat conduction capability of the high molecular material is remarkably enhanced by virtue of the positive synergetic hybrid effect of a three-dimensional heat-conducting network formed by the high-thermal-diffusion-coefficient heat-conducting fillers different in shape in the processing course, and therefore the problems of poor heat conduction and thermal diffusion properties of the high molecular material for the existing LED lamp cooling housing are solved; in the preparation process, the compatibility between the surface modified high-thermal-diffusion-coefficient high molecular material and a resin matrix is improved, the viscosity of the synthetic resin melt is reduced and the dispersity of the filler is improved to enhance the processability; as a result, the product has excellent surface quality and mechanical properties; the high molecular material further has the advantages of high thermal conductivity and high tenacity.
Owner:HUIZHOU KINGBALI TECH

Phosphorus-containing nitrile/DOPO double-base structure phosphorus-containing fire retardant, preparation method of phosphorus-containing nitrile/DOPO double-base structure phosphorus-containing fire retardant, and flame-retardant epoxy resin prepared from phosphorus-containing nitrile/DOPO double-base structure phosphorus-containing fire retardant

InactiveCN104403128AEfficient flame retardant effectImprove thermal stabilityGroup 5/15 element organic compoundsEpoxyFiltration
The invention relates to a phosphorus-containing fire retardant, a preparation method of the phosphorus-containing fire retardant and a flame-retardant epoxy resin prepared from the phosphorus-containing fire retardant, and especially relates to a phosphorus-containing nitrile/DOPO double-base structure phosphorus-containing fire retardant, a preparation method of the phosphorus-containing nitrile/DOPO double-base structure phosphorus-containing fire retardant, and flame-retardant epoxy resin prepared from the phosphorus-containing nitrile/DOPO double-base structure phosphorus-containing fire retardant. The flame-retardant epoxy resin solves the problem that the existing epoxy resin has low flame retardation efficiency and poor compatibility between a polymer matrix and a fire retardant. The preparation method comprises the following steps of 1, dissolving p-hydroxybenzaldehyde and tetrahydrofuran, adding triethylamine into the solution and carrying out stirring, 2, dissolving phosphonitrilic chloride trimer in tetrahydrofuran, dropwisely adding the solution into the reaction system, and carrying out heating and stirring, 3, cooling the reaction system, concentrating the filtrate, pouring the filtrate into water for precipitate separation, carrying out pumping filtration, carrying out recrystallization on the precipitates and carrying out drying to obtain intermediates, and 4, dissolving the intermediates by a solvent, adding p-aminophenol into the solution, carrying out heating reflux, adding DOPO into the reflux product, carrying out condensation, pouring the concentrate into cold ethanol for solid precipitation, and washing and drying the solids to obtain the phosphorus-containing nitrile/DOPO double-base structure phosphorus-containing fire retardant. The flame-retardant epoxy resin comprises epoxy resin, a curing agent and the phosphorus-containing nitrile/DOPO double-base structure phosphorus-containing fire retardant. The preparation method is used for preparing the phosphorus-containing nitrile/DOPO double-base structure phosphorus-containing fire retardant.
Owner:NORTHEAST FORESTRY UNIVERSITY

Full-biodegradable composite as well as preparation method and application of full-biodegradable composite

ActiveCN104479304AGood compatibilityImproved tear strength lowerPolymer scienceKaolin clay
The invention discloses a full-biodegradable composite as well as a preparation method and application of the full-biodegradable composite. The full-biodegradable composite comprises the following components: 5-40 parts of inorganic filler full-biodegradable masterbatches, 40-80 parts of biodegradable copolyester, 10-40 parts of polylactic acid and 0.1-5 parts of a compatilizer, wherein the inorganic filler full-biodegradable masterbatches comprise the following components: 20-80 parts of the biodegradable copolyester, 20-80 parts of inorganic filler, 0.1-10 parts of a lubricating agent and 0.1-5 parts of the compatilizer; and the inorganic filler is one or a combination of modified kaolin, modified white carbon black and modified montmorillonite. According to the full-biodegradable composite, the modified montmorillonite, the modified kaolin or the modified white carbon black is added as an enhancer, and an epoxy acrylic copolymer is introduced as the compatilizer, so that the compatibility of inorganic filler and matrix resin is enhanced, and the uniform dispersion is achieved; and the masterbatches are added into the matrix resin, so that the problem of relatively low tearing strength of a blend film and a sheet can be effectively improved.
Owner:KINGFA SCI & TECH CO LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products