Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

11311 results about "Pelletizing" patented technology

Pelletizing is the process of compressing or molding a material into the shape of a pellet. A wide range of different materials are pelletized including chemicals, iron ore, animal compound feed, plastics, and more.

Polymer wood composite

The invention relates to a composition comprising a polymer and wood fiber composite that can be used in the form of a linear extrudate or thermoplastic pellet to manufacture structural members. The polymer and wood fiber composite structural members can be manufactured in an extrusion process or an injection molding process. The linear extrudate or pellet can have a cross-section of any arbitrary shape, or can be a regular geometric. The pellet can have a cross-section shape having a volume of at least about 12 mm3. Preferably the pellet is a right cylindrical pellet having a minimum radius of about 1.5 mm and a minimum length of 1 mm weighing at least 14 mg. The invention also relates to an environmentally sensitive recycle of waste streams. The polymer and wood fiber composite contains an intentional recycle of a waste stream comprising polymer flakes or particles or wood fiber. The waste stream can comprises, in addition to polymer such as polyvinyl chloride or wood fiber, adhesive, paint, preservative, or other chemical stream common in the wood-window or door manufacturing process, or mixtures thereof. The initial mixing step before extrusion of the composite material insures substantial mixing and melt contact between molten polymer and wood fiber. The extruded pellet comprises a consistent proportion of polymer, wood fiber and water. During the extrusion, water is removed intentionally to dry the material to a maximum water content of less than about 10 wt-% based on the pellet weight. To make a structural unit, the pellet is introduced into an extruder or injection molding apparatus wherein, under conditions of temperature and pressure, the composite pellet material is shaped into a useful cross-section. Alternatively, the extruded thermoplastic mass, in the form of a elongated linear extrudate without a pelletizing step, can be immediately directed after formation into an extruder or injection molding apparatus.
Owner:ANDERSEN CORPORATION

Appearance-improving spraying-free aesthetic resin and its preparation method

The invention relates to an appearance-improving spraying-free aesthetic resin and its preparation method. The resin comprises the following components by weight part: 90 of matrix resin, 0.1-2.0 of a lubricant, 0.1-1.0 of an antioxidant, and 10-30 of a magnetic metallic pigment masterbatch, which consists of the following components by weight part: 100 of the matrix resin, 1.0-20 of a magnetic metallic pigment, 1.0-30 of a pearlescent pigment, 0.1-2.0 of the lubricant, 0.1-1.0 of the antioxidant. The preparation method includes: preparing the magnetic metallic pigment masterbatch; and mixingthe above raw materials, then conducting mixing, extrusion, bracing, cooling, and pelletizing, thus obtaining the aesthetic resin. The aesthetic resin of the invention can effectively improve the affinity of an aluminum powder pigment and a plastic substrate, mitigate flow marks and weld lines that appear during injection molding or extrusion of aluminum powder pigment-containing aesthetic resin,and simultaneously strengthens the metal effect a made piece, greatly reduces consumption of the aluminum powder pigment, and saves cost. The present invention is green and environmental aesthetics resin instead of traditional paint scheme provides technical support. The aesthetic resin and the preparation method provided in the invention provide technical support for green and environmentally friendly aesthetic resin to substitute traditional paint spraying schemes.
Owner:SHANGHAI KUMHO SUNNY PLASTICS

Thermoplastic elastomer micropore foaming material and preparation method thereof

The invention discloses a thermoplastic elastomer micropore foaming material and a preparation method thereof. The material comprises the following componnets in parts by weight: 70-95 parts of thermoplastic elastomer and 5-30 parts of foaming agent master batch. The preparation method comprises the following steps of: based on weight parts, placing 50-90 parts of compatibilizers, 6-30 parts of foaming agent and 4-20 parts of auxiliary foaming agents into a double-roller open mill for mixing to prepare foaming agent master batch; sequentially adding 100 parts of matrix rubber, 5-10 parts of active agent, 20-100 parts of reinforced fillers, 0-20 parts of softening agents, 0.5-5 parts of vulcanizing agents and 1-10 parts of accelerating agents into the open mill or an internal mixer for uniformly mixing to prepare a rubber compound; chopping the rubber compound and uniformly mixing the chopped rubber compound with 10-70 parts of plastics by a high-speed mixer; and extruding and pelleting the mixture to prepare thermoplastic vulcanizate (TPV) aggregates; and uniformly mixing the foaming agent master batch with the TPV aggregates to extrude and form again to prepare a high-performance micropore foaming material for vibration attenuation. The TPV foaming material is high in physical and mechanical properties and thermal ageing performance, is simple in process, can be widely popularized, and is suitable for being used in the field of rail transit.
Owner:ZHUZHOU TIMES NEW MATERIALS TECH

Flame-retardant and antistatic wood-plastic composite material and preparation method thereof

ActiveCN104327530AAchieve flame retardant and antistatic effectImprove flame retardant performanceThermoplasticFiber
The invention discloses a flame-retardant and antistatic wood-plastic composite material and a preparation method thereof and relates to a wood-plastic composite material and a preparation method thereof. The invention aims at solving the problems of relatively poor flame retardance and relatively high cost of the existing antistatic wood-plastic composite material. The wood-plastic composite material is prepared from the following components in parts by weight: a lignocellulosic material, thermoplastic, a lubricant, an antistatic agent, a flame retardant, a coupling agent and an inorganic filler. The method comprises the following steps: 1) performing hot mixing on the lignocellulosic material, the thermoplastic and the lubricant to obtain a hot-mixed material; 2) putting the hot-mixed material into a cold mixing machine for cold mixing, and adding the weighed antistatic agent, the flame retardant, the coupling agent and the inorganic filler into the cold mixing machine for re-mixing when the temperature is lowered to 40-60 DEG C to obtain a premix; 3) putting the premix into a twin-screw extruder to perform melting, mixing and granulation; and 4) performing extrusion molding or thermoforming to prepare the flame-retardant and antistatic wood-plastic composite material. The flame-retardant and antistatic wood-plastic composite material is used in the fields of indoor buildings, decorations, decoration materials and the like.
Owner:NORTHEAST FORESTRY UNIVERSITY

High thermal conducting composite material and preparation method thereof

This invention relates to a high thermal conducting composite material for injecting or extrusion molding, which is prepared from the following components in parts by weight: 100 parts of plastic substrate, 30 to 100 parts of thermal conducting filler with a diameter between 50 to 300 microns, 0 to 50 parts of thermal conducting filler with a small diameter between 1 to 10 microns, 10 to 50 parts of fiberglass or silicon whisker, 0 to 5 parts of coupling agent and 0 to 8 parts of additive. The preparation of the high thermal conducting composite material comprises the following steps: adding the coupling agent to the thermal conducting filler with a small diameter and the thermal conducting filler with a big diameter respectively to do surface treatment for later use; putting the plastic substrate material, the processed thermal conducting filler with a big diameter and other additives to a super mixer to mix for 1 to 5 minutes; adding the processed thermal conducting filler with a small diameter into the super mixer to mix for 2 to 3 minutes; putting the mixed material into a feeding bucket of a twin screw extruder; adding the fiberglass into a glass fiber orifice; and pelleting after melting and extruding. The composite material prepared by the invention has good thermal conducting property and processing property.
Owner:黄晓峰

Glass fiber reinforced polypropylene composite material with low odor and preparation method thereof

The invention discloses a glass fiber reinforced polypropylene composite material with low odor and a preparation method thereof. The glass fiber reinforced polypropylene composite material comprises the following components: 32-91% of polypropylene resin, 5-50% of glass fiber, 2-8% of compatilizer, 1-6% of odor inhibitor and 1-4% of other auxiliary agent. The reinforced polypropylene material with low odor is prepared by fusing, extruding and granulating the components through a double screw extruder under the temperature control condition of 220-240 DEG C. The odor inhibitor comprises 30-50% of ricinoleic acid zinc, 20-40% of metal oxide and 10-30% of a clay mineral system. The odor of the glass fiber reinforced polypropylene composite material can be inhibited through combining a physical method and a chemical method. The glass fiber reinforced polypropylene composite material prepared by the method has excellent odor performance; the odor level can be reduced below level 3; the physical property of the glass fiber reinforced polypropylene composite material per se is not influenced after the odor inhibitor is added; and the application field of the glass fiber reinforced polypropylene material in vehicle interior trim parts and a part of home appliance parts can be widened.
Owner:CHENGDU KINGFA SCI & TECH ADVANCED MATERIALS CO LTD +3

Advanced polymer wood composite

The invention relates to a composition comprising a polymer and wood fiber composite that can be used in the form of a linear extrudate or thermoplastic pellet to manufacture structural members. The polymer and wood fiber composite structural members can be manufactured in an extrusion process or an injection molding process. The linear extrudate or pellet can have a cross-section of any arbitrary shape, or can be a regular geometric. The pellet can have a cross-section shape having a volume of at least about 12 mm3. Preferably the pellet is a right cylindrical pellet having a minimum radius of about 1.5 mm and a minimum length of 1 mm weighing at least 14 mg. The invention also relates to an environmentally sensitive recycle of waste streams. The polymer and wood fiber composite contains an intentional recycle of a waste stream comprising polymer flakes or particles or wood fiber. The waste stream can comprise, in addition to polymer such as polyvinyl chloride or wood fiber, adhesive, paint, preservative, or other chemical stream common in the wood-window or door manufacturing process, or mixtures thereof. The initial mixing step before extrusion of the composite material insures substantial mixing and melt contact between molten polymer and wood fiber. The extruded pellet comprises a consistent proportion of polymer, wood fiber and water. During the extrusion, water is removed intentionally to dry the material to a maximum water content of less than about 10 wt-% based on the pellet weight. To make a structural unit, the pellet is introduced into an extruder or injection molding apparatus wherein, under conditions of temperature and pressure, the composite pellet material is shaped into a useful cross-section. Alternatively, the extruded thermoplastic mass, in the form of an elongated linear extrudate without a pelletizing step, can be immediately directed after formation into an extruder or injection molding apparatus.
Owner:ANDERSEN CORPORATION

Macromolecule heat conduction and dissipation blended composite material and automatic preparation method

The invention discloses a macromolecule heat conduction and dissipation blended composite material. The macromolecule heat conduction and dissipation blended composite material is prepared from, by mass, 35-75 parts of matrix resin, 0-10 parts of flexibilizer, 20-50 parts of heat conduction filler, 0.2-1.0 part of antioxidant 1010, 0.2-1.0 part of phosphite ester antioxidant 168, 0.5-1.5 parts of powder surface activation treating agents and 0.5-1.5 parts of lubricant. An automatic preparation method of the macromolecule heat conduction and dissipation blended composite material includes the steps of firstly, conducting surface treating on heat conduction filler for 20 min through powder surface activation treating agents in a high-speed stirring machine; secondly, making the heat conduction filler enter another high-speed stirring machine through an automatic conveying device to be evenly mixed with other materials; thirdly, automatically conveying the mixture obtained in the second step to an internal mixer to be mixed and kneaded for 15 min; fourthly, making the obtained mixture directly enter a double-screw extruder to be extruded and granulated. The prepared heat conduction and dissipation material has the high mechanical property and heat conduction performance, automatic and continuous production is achieved, a large amount of labor is saved, the production period is greatly shortened, the production cost is greatly reduced, and the macromolecule heat conduction and dissipation blended composite material can be widely applied to the fields of LED illumination, electronic electrical appliances, automobiles and the like where good heat conduction and dissipation performance is required.
Owner:东莞市万江明冠实业有限公司

Preparation Method of Lithium-Metal Composite Oxides

Disclosed is a method for preparing a lithium-metal composite oxide, the method comprising the steps of: (a) mixing an aqueous solution of one or more transition metal-containing precursor compounds with an alkalifying agent and a lithium precursor compound to precipitate hydroxides of the transition metals; (b) mixing the mixture of step (a) with water under supercritical or subcritical conditions to synthesize a lithium-metal composite oxide, and drying the lithium-metal composite oxide; and (c) subjecting the dried lithium-metal composite oxide either to calcination or to granulation and then calcination. Also disclosed are an electrode comprising the lithium-metal composite oxide, and an electrochemical device comprising the electrode. In the disclosed invention, a lithium-metal composite oxide synthesized based on the prior supercritical hydrothermal synthesis method is subjected either to calcination or to granulation and then calcination. Thus, unlike the prior dry calcination method or wet precipitation method, a uniform solid solution can be formed and the ordering of metals in the composite oxide can be improved. Accordingly, the lithium-metal composite oxide can show crystal stability and excellent electrochemical properties.
Owner:HANWHA CHEMICAL CORPORATION +1

Ultraviolet crosslinked expansion type flame-retardant polyolefin cable insulation sheath material and preparation thereof

The invention discloses an insulating and sheathing material of ultraviolet light crosslinking expanding type phosphorus nitrogen flaming resistance polyolefine cables and a preparation method thereof. The invention is characterized in that polyethylene/PEMA and/or ethylene vinyl acetate or maleic anhydride grafted ethylene vinyl acetate or acid amide grafted ethylene vinyl acetate copolymer are taken as base, added with expanding type phosphorus nitrogen halogen-free flame retardants, light trigger, polyfunctional group cross linker and chemical inhibitor and matched with flaming retardant synergistic agent, antismoke agent and processing aid, and then squeezed out and pelleted into photo-crosslinking flame retardant cable materials; and then the flame retardant cable materials are melted and extruded on a cable conductor wire core and clad into an insulating layer and a sheathing layer; hereupon the ultraviolet light irradiation crosslinking is carried on the insulating layer or the sheathing layer. Via detecting, the oxygen index of the insulating layer or the sheathing layer is larger than 30%, the vertical flaming experiment passes through UL-94 V0 level, the tensile strength is larger than 12Mpa, the elongation at break is larger than 350%, and the electric volume resistivity is larger than 8*10 omega.cm.
Owner:HONGLONGJIANG ORIENT SCI & TECH +1

Metallurgical composite pelletizing prepared through twice pelletizing method, as well as preparation method and application thereof

The invention provides a metallurgical composite pelletizing prepared through a twice pelletizing method, as well as a preparation method and an application thereof. The pelletizing is provided with a pelletizing shell formed by a central pelletizing core and a pellet material coating the outside of the pelletizing core. The internal pelletizing core of the formed pelletizing is in a reducing atmosphere, the outside of the formed pelletizing is in an oxidizing atmosphere, and the metallurgical composite pelletizing undergoing twice pelletizing satisfies the metallurgical requirements. The pelletizing core takes an iron-containing material and reducing coal dust or coke powder as raw materials in which adhesive and waste fly dust are added, and is obtained by means of disk pelletization or pressure pelletization. The pelletizing shell takes the iron-containing material and the pelletizing core as raw materials in which the adhesive is added, and is obtained by means of disk pelletization and taking the pelletizing core as the center of the sphere. Various metallurgical performance indexes of the composite pelletizing are highly better than normal pellets. The composite pelletizing not only realizes the harmlessness and the recycling of the waste fly ash, but also can greatly improve the technical and economic indexes of iron making blast furnaces. In addition, the composite pelletizing not only achieves such social benefits as energy conservation, emission reduction, environment protection and environment pollution treatment, but also can create considerable economic benefits.
Owner:CHONGQING ANGRUIYUE SCI & TECH

Preparation method of novel core-shell type cement-based high-strength lightweight aggregate

ActiveCN103496866AConducive to the protection of non-renewable resourcesSimple processSolid waste managementSpecific functionPollution
The invention provides a preparation method of novel core-shell type cement-based high-strength lightweight aggregate. A cement-based composite material (cement and an admixture) is used as a main cementing material of a shell material, a pelletizing process is adopted for surrounding a shell outside a lightweight core material, and the high-strength lightweight aggregate can be successfully prepared after curing is performed for a certain period of time. The prepared light aggregate has the advantages of high specific strength, good grain shape and good heat preservation and heat insulation, and can realize certain specific functions, such as heat storage, sound insulation and wave absorption. A production process of the high-strength light aggregate comprises the steps of mixing powder, uniformly stirring, spraying liquid to form pellets, curing (steam curing and moisturizing) and screening. According to the preparation method, the problems of great production energy consumption, complex process and serious pollution of the aggregate produced by a traditional sintering process or the problems of relatively large packing density, insufficiently high strength and insufficiently high product quality of unburned ceramsite products are solved.
Owner:SOUTHEAST UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products