Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2194 results about "Anticancer drug" patented technology

Anticancer drug, also called antineoplastic drug, any drug that is effective in the treatment of malignant, or cancerous, disease. There are several major classes of anticancer drugs; these include alkylating agents, antimetabolites, natural products, and hormones.

Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof

In accordance with the present invention, there are provided compositions and methods useful for the in vivo delivery of substantially water insoluble pharmacologically active agents (such as the anticancer drug paclitaxel) in which the pharmacologically active agent is delivered in the form of suspended particles coated with protein (which acts as a stabilizing agent). In particular, protein and pharmacologically active agent in a biocompatible dispersing medium are subjected to high shear, in the absence of any conventional surfactants, and also in the absence of any polymeric core material for the particles. The procedure yields particles with a diameter of less than about 1 micron. The use of specific composition and preparation conditions (e.g., addition of a polar solvent to the organic phase), and careful election of the proper organic phase and phase fraction, enables the reproducible production of unusually small nanoparticles of less than 200 nm diameter, which can be sterile-filtered. The particulate system produced according to the invention can be converted into a redispersible dry powder comprising nanoparticles of water-insoluble drug coated with a protein, and free protein to which molecules of the pharmacological agent are bound. This results in a unique delivery system, in which part of the pharmacologically active agent is readily bioavailable (in the form of molecules bound to the protein), and part of the agent is present within particles without any polymeric matrix therein.
Owner:ABRAXIS BIOSCI LLC

Formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof

In accordance with the present invention, there are provided compositions and methods useful for the in vivo delivery of substantially water insoluble pharmacologically active agents (such as the anticancer drug paclitaxel) in which the pharmacologically active agent is delivered in the form of suspended particles coated with protein (which acts as a stabilizing agent). In particular, protein and pharmacologically active agent in a biocompatible dispersing medium are subjected to high shear, in the absence of any conventional surfactants, and also in the absence of any polymeric core material for the particles. The procedure yields particles with a diameter of less than about 1 micron. The use of specific composition and preparation conditions (e.g., addition of a polar solvent to the organic phase), and careful selection of the proper organic phase and phase fraction, enables the reproducible production of unusually small nanoparticles of less than 200 nm diameter, which can be sterile-filtered. The particulate system produced according to the invention can be converted into a redispersible dry powder comprising nanoparticles of water-insoluble drug coated with a protein, and free protein to which molecules of the pharmacological agent are bound. This results in a unique delivery system, in which part of the pharmacologically active agent is readily bioavailable (in the form of molecules bound to the protein), and part of the agent is present within particles without any polymeric matrix therein.
Owner:ABRAXIS BIOSCI LLC

Anticancer compositions

Pharmaceutical dosage forms for anticancer drugs, and paclitaxel in particular, are described in which the active drug is formulated as storage stable self-emulsifying preconcentrate.
Owner:RTP PHARMA

Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof

In accordance with the present invention, there are provided compositions and methods useful for the in vivo delivery of substantially water insoluble pharmacologically active agents (such as the anticancer drug paclitaxel) in which the pharmacologically active agent is delivered in the form of suspended particles coated with protein (which acts as a stabilizing agent). In particular, protein and pharmacologically active agent in a biocompatible dispersing medium are subjected to high shear, in the absence of any conventional surfactants, and also in the absence of any polymeric core material for the particles. The procedure yields particles with a diameter of less than about 1 micron. The use of specific composition and preparation conditions (e.g., addition of a polar solvent to the organic phase), and careful selection of the proper organic phase and phase fraction, enables the reproducible production of unusually small nanoparticles of less than 200 nm diameter, which can be sterile-filtered. The particulate system produced according to the invention can be converted into a redispersible dry powder comprising nanoparticles of water-insoluble drug coated with a protein, and free protein to which molecules of the pharmacological agent are bound. This results in a unique delivery system, in which part of the pharmacologically active agent is readily bioavailable (in the form of molecules bound to the protein), and part of the agent is present within particles without any polymeric matrix therein.
Owner:ABRAXIS BIOSCI LLC

ANTICANCER AGENT DELIVERY SYSTEM USING pH-SENSITIVE METAL NANOPARTICLES

The present invention relates to a method for effectively delivering an anticancer drug into cancer cells by binding the anticancer drug to pH-sensitive metal nanoparticles so as to be separated from cancer cells. The pH-sensitive metal nanoparticles according to the present invention may be heated by photothermal therapy, thereby effectively killing cancer cells in conjunction with the isolated anticancer drug.
Owner:POSTECH ACAD IND FOUND

Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof

In accordance with the present invention, there are provided compositions and methods useful for the in vivo delivery of substantially water insoluble pharmacologically active agents (such as the anticancer drug paclitaxel) in which the pharmacologically active agent is delivered in the form of suspended particles coated with protein (which acts as a stabilizing agent). In particular, protein and pharmacologically active agent in a biocompatible dispersing medium are subjected to high shear, in the absence of any conventional surfactants, and also in the absence of any polymeric core material for the particles. The procedure yields particles with a diameter of less than about 1 micron. The use of specific composition and preparation conditions (e.g., addition of a polar solvent to the organic phase), and careful selection of the proper organic phase and phase fraction, enables the reproducible production of unusually small nanoparticles of less than 200 nm diameter, which can be sterile-filtered. The particulate system produced according to the invention can be converted into a redispersible dry powder comprising nanoparticles of water-insoluble drug coated with a protein, and free protein to which molecules of the pharmacological agent are bound. This results in a unique delivery system, in which part of the pharmacologically active agent is readily bioavailable (in the form of molecules bound to the protein), and part of the agent is present within particles without any polymeric matrix therein.
Owner:ABRAXIS BIOSCI LLC

Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof

In accordance with the present invention, there are provided compositions and methods useful for the in vivo delivery of substantially water insoluble pharmacologically active agents (such as the anticancer drug paclitaxel) in which the pharmacologically active agent is delivered in the form of suspended particles coated with protein (which acts as a stabilizing agent). In particular, protein and pharmacologically active agent in a biocompatible dispersing medium are subjected to high shear, in the absence of any conventional surfactants, and also in the absence of any polymeric core material for the particles. The procedure yields particles with a diameter of less than about 1 micron. The use of specific composition and preparation conditions (e.g., addition of a polar solvent to the organic phase), and careful selection of the proper organic phase and phase fraction, enables the reproducible production of unusually small nanoparticles of less than 200 nm diameter, which can be sterile-filtered. The particulate system produced according to the invention can be converted into a redispersible dry powder comprising nanoparticles of water-insoluble drug coated with a protein, and free protein to which molecules of the pharmacological agent are bound. This results in a unique delivery system, in which part of the pharmacologically active agent is readily bioavailable (in the form of molecules bound to the protein), and part of the agent is present within particles without any polymeric matrix therein.
Owner:ABRAXIS BIOSCI LLC

Orally Bioavailable Caffeic Acid Related Anticancer Drugs

ActiveUS20070232668A1Improved pharmacological profileImproved tissue penetrationBiocideSenses disorderCancer cellMedicine
The present invention concerns compounds and their use to treat cell proliferative diseases such as cancer. Compounds of the present invention display significant potency as inhibitors of Jak2 / STAT3 pathways and downstream targets and inhibit the growth and survival of cancerous cell lines.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

Compositions for treatment of cancer

ActiveUS20070238667A1Reduces SNCG-mediated resistanceInhibit cancer cell proliferationPeptide/protein ingredientsAntibody mimetics/scaffoldsAnkyrin Repeat ProteinCancer therapy
Synthetic peptides containing an ankyrin repeat-like motif or portion thereof and mimetics thereof which interact with synuclein-gamma (SNCG) and reduce SNCG-mediated resistance of SNCG-expressing cancer cells to treatment with anticancer drugs or inhibit tumorigenesis and cancer cell proliferation are provided. Compositions containing these peptides, portions thereof or mimetics thereof are also provided. Methods for use of these peptides or portions thereof, compositions, and mimetics thereof in potentiating efficacy of anticancer drugs, in particular microtubule inhibitors and hormonal cancer therapies, and in treating cancer are also provided.
Owner:SINGH VINAY K +1

Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof

In accordance with the present invention, there are provided compositions and methods useful for the in vivo delivery of substantially water insoluble pharmacologically active agents (such as the anticancer drug paclitaxel) in which the pharmacologically active agent is delivered in the form of suspended particles coated with protein (which acts as a stabilizing agent). In particular, protein and pharmacologically active agent in a biocompatible dispersing medium are subjected to high shear, in the absence of any conventional surfactants, and also in the absence of any polymeric core material for the particles. The procedure yields particles with a diameter of less than about 1 micron. The use of specific composition and preparation conditions (e.g., addition of a polar solvent to the organic phase), and careful selection of the proper organic phase and phase fraction, enables the reproducible production of unusually small nanoparticles of less than 200 nm diameter, which can be sterile-filtered. The particulate system produced according to the invention can be converted into a redispersible dry powder comprising nanoparticles of water-insoluble drug coated with a protein, and free protein to which molecules of the pharmacological agent are bound. This results in a unique delivery system, in which part of the pharmacologically active agent is readily bioavailable (in the form of molecules bound to the protein), and part of the agent is present within particles without any polymeric matrix therein.
Owner:ABRAXIS BIOSCI LLC

Anti-tumor long-circulating target liposomes for injections

The invention relates to an injection anticancer long circulating targeting liposome which is characterized in that anti-angiogenic drug is combined with anticancer drug, the liposome modified by polypeptide with tumor targeting function and hydrophilic polyethyleneglycol is adopted for loading and transporting the two drugs to tumor positions, and the tumor curative effect is enhanced through the different releasing rates and action mechanism of the two drugs.
Owner:PEKING UNIV

Phosphaplatins and their use in the treatment of cancers resistant to cisplatin and carboplatin

The present invention provides phosphaplatins, stable isolated monomeric phosphate complexes of platinum (II) and (IV), and methods of use thereof for treating cancers, including cisplatin- and carboplatin-resistant cancers. Unlike cisplatin, these complexes do not readily undergo hydrolysis and are quite soluble and stable in aqueous solutions. Moreover, these complexes—unlike cisplatin, carboplatin, and related platinum-based anti-cancer agents—do not bind DNA. Rather, data suggests that phosphaplatins trigger overexpression of fas and fas-related transcription factors and some proapoptotic genes such as Bak and Bax. Nevertheless, the complexes exhibit tremendous cytotoxicity towards cancer cells. Thus, the present invention provides novel platinum anticancer agents that have a different molecular target than those in the art.
Owner:OHIO UNIV

Formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof

In accordance with the present invention, there are provided compositions and methods useful for the in vivo delivery of substantially water insoluble pharmacologically active agents (such as the anticancer drug paclitaxel) in which the pharmacologically active agent is delivered in the form of suspended particles coated with protein (which acts as a stabilizing agent). In particular, protein and pharmacologically active agent in a biocompatible dispersing medium are subjected to high shear, in the absence of any conventional surfactants, and also in the absence of any polymeric core material for the particles. The procedure yields particles with a diameter of less than about 1 micron. The use of specific composition and preparation conditions (e.g., addition of a polar solvent to the organic phase), and careful selection of the proper organic phase and phase fraction, enables the reproducible production of unusually small nanoparticles of less than 200 nm diameter, which can be sterile-filtered. The particulate system produced according to the invention can be converted into a redispersible dry powder comprising nanoparticles of water-insoluble drug coated with a protein, and free protein to which molecules of the pharmacological agent are bound. This results in a unique delivery system, in which part of the pharmacologically active agent is readily bioavailable (in the form of molecules bound to the protein), and part of the agent is present within particles without any polymeric matrix therein.
Owner:ABRAXIS BIOSCI LLC

Novel improved compositions for cancer therapy

InactiveUS20100166872A1Reduced chemotherapy-induced side-effectsOrganic active ingredientsBiocideDocetaxel-PNPSide effect
The present invention relates to novel and improved compositions of anticancer drugs, preferably taxanes, such as paclitaxel and docetaxel, their derivatives or their analogues, methods of manufacturing these compositions and methods of fractionating the particles in particular size range and methods of treating cancer patients with these compositions, which provide reduced chemotherapy-induced side-effects especially reduced chemotherapy-induced-alopecia. The composition is such that there is substantially no free drug in the said composition.
Owner:PANACEA BIOTEC

Common carrier material for targeting anticancer drug and gene and preparation and application

The invention relates to a common carrier material based on graphene oxide for a targeting anticancer drug and a gene and application and application. Folic acid, lactobionic acid and other tumor cell targeting or liver targeting molecules and part of amino groups of soluble chitosan are connected by amide bonds to prepare a conjugate, the conjugate is then connected with graphene oxide, quaternization is performed by using an epoxy compound with a quaternary ammonium group, and gene molecules are loaded by the quaternizationquaternized part of the chitosan through electrostatic attraction; and then the anticancer drug is loaded by pi-pi conjugates, hydrogen bonds and hydrophobic effects in a non-covalent bond method. By adopting the targeting performance of targeting molecules and effects of graphene oxide of a particular size to enhance penetration and retention in tumor tissues and combining the performance of the graphene oxide for pH response control release of the loaded drug, the drug can be realized released in a tumor cell, an intelligent delivery system for the common carrier of the tumor targeting or liver targeting anticancer drug and the gene is synthesized from the perspective of synergetic medication, and a theoretical basis and a method basis are provided for combined therapy of tumor.
Owner:TIANJIN MEDICAL UNIV

Cell differentiation inducer

The novel benzamide derivative represented by formula (1) and the novel anilide derivative represented by formula (13) of this invention has differentiation-inducing effect, and are, therefore, useful a therapeutic or improving agent for malignant tumors, autoimmune diseases, dermatologic diseases and parasitism. In particular, they are highly effective as an anticancer drug, specifically to a hematologic malignancy and a solid carcinoma.
Owner:BAYER INTELLECTUAL PROPERTY GMBH

Systems and Methods for Drug Infusion with Feedback Control

A system and method for infusing a drug under continuous positive pressure (such as convection enhanced deliver) to a target tissue to be treated is particularly useful for post-resection anticancer drug therapy. The system comprises a drug infusion catheter having an expandable device which is expanded within the target tissue such that the target tissue conforms to an outer surface of the expandable device, thereby creating a form of seal around the target volume in order to maintain an effective drug pressure gradient within the target tissue. The system further comprises a sensor to measure a parameter which can be correlated to the degree of conformance between the target tissue and the outer surface of the expandable device. The sensor is coupled to a feedback control system to determine whether there is a loss of conformance, and to adjust the expansion of the expandable device in order to maintain good conformance.
Owner:CYTYC CORP

Drug delivery system for the subconjunctival administration of fine grains

The present invention provides an excellent drug delivery system to posterior segments. An injection according to the present invention is a periocular injection which comprises fine particles containing a drug and enables the drug to deliver to the posterior segments. The drug can be efficiently delivered to the posterior segments (such as a retina, a choroid and an optic nerve) while scarcely injuring ophthalmic tissues by administering the fine particles containing the drug periocularlly. Preferred fine particles are made of a synthetic biodegradable polymer, their average particle diameter is 50 nm to 150 μm, and the drug is dispersed in the fine particles uniformly. Preferred drugs are anti-inflammatories, immunosuppressors, antivirals, anticancer drugs, angiogenesis inhibitors, optic neural protectants, antimicrovials and antifungal agents.
Owner:SANTEN PHARMA CO LTD

Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof

In accordance with the present invention, there are provided compositions and methods useful for the in vivo delivery of substantially water insoluble pharmacologically active agents (such as the anticancer drug paclitaxel) in which the pharmacologically active agent is delivered in the form of suspended particles coated with protein (which acts as a stabilizing agent). In particular, protein and pharmacologically active agent in a biocompatible dispersing medium are subjected to high shear, in the absence of any conventional surfactants, and also in the absence of any polymeric core material for the particles. The procedure yields particles with a diameter of less than about 1 micron. The use of specific composition and preparation conditions (e.g., addition of a polar solvent to the organic phase), and careful selection of the proper organic phase and phase fraction, enables the reproducible production of unusually small nanoparticles of less than 200 nm diameter, which can be sterile-filtered. The particulate system produced according to the invention can be converted into a redispersible dry powder comprising nanoparticles of water-insoluble drug coated with a protein, and free protein to which molecules of the pharmacological agent are bound. This results in a unique delivery system, in which part of the pharmacologically active agent is readily bioavailable (in the form of molecules bound to the protein), and part of the agent is present within particles without any polymeric matrix therein.
Owner:ABRAXIS BIOSCI LLC

Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof

In accordance with the present invention, there are provided compositions and methods useful for the in vivo delivery of substantially water insoluble pharmacologically active agents (such as the anticancer drug paclitaxel) in which the pharmacologically active agent is delivered in the form of suspended particles coated with protein (which acts as a stabilizing agent). In particular, protein and pharmacologically active agent in a biocompatible dispersing medium are subjected to high shear, in the absence of any conventional surfactants, and also in the absence of any polymeric core material for the particles. The procedure yields particles with a diameter of less than about 1 micron. The use of specific composition and preparation conditions (e.g., addition of a polar solvent to the organic phase), and careful selection of the proper organic phase and phase fraction, enables the reproducible production of unusually small nanoparticles of less than 200 nm diameter, which can be sterile-filtered. The particulate system produced according to the invention can be converted into a redispersible dry powder comprising nanoparticles of water-insoluble drug coated with a protein, and free protein to which molecules of the pharmacological agent are bound. This results in a unique delivery system, in which part of the pharmacologically active agent is readily bioavailable (in the form of molecules bound to the protein), and part of the agent is present within particles without any polymeric matrix therein.
Owner:ABRAXIS BIOSCI LLC

Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof

In accordance with the present invention, there are provided compositions and methods useful for the in vivo delivery of substantially water insoluble pharmacologically active agents (such as the anticancer drug paclitaxel) in which the pharmacologically active agent is delivered in the form of suspended particles coated with protein (which acts as a stabilizing agent). In particular, protein and pharmacologically active agent in a biocompatible dispersing medium are subjected to high shear, in the absence of any conventional surfactants, and also in the absence of any polymeric core material for the particles. The procedure yields particles with a diameter of less than about 1 micron. The use of specific composition and preparation conditions (e.g., addition of a polar solvent to the organic phase), and careful selection of the proper organic phase and phase fraction, enables the reproducible production of unusually small nanoparticles of less than 200 nm diameter, which can be sterile-filtered. The particulate system produced according to the invention can be converted into a redispersible dry powder comprising nanoparticles of water-insoluble drug coated with a protein, and free protein to which molecules of the pharmacological agent are bound. This results in a unique delivery system, in which part of the pharmacologically active agent is readily bioavailable (in the form of molecules bound to the protein), and part of the agent is present within particles without any polymeric matrix therein.
Owner:ABRAXIS BIOSCI LLC

Targeting protein-polyethylene glycol-anticancer medicament junctional complex

The invention discloses a water-soluble targeting protein-polyethylene glycol-anticancer medicament junctional complex with targeting function and a preparation method thereof. The targeting protein-polyethylene glycol-anticancer medicament junctional complex provided by the invention is characterized by ensuring that the dissolvability of an anticancer medicament is improved, the in-vivo half-life period of the medicament is prolonged, and the anticancer medicament is selectively targeted so as to be released to tumor cells by virtue of the tumor passive targeting function of the macromolecular junctional complex and the tumor active targeting function of targeting protein specifically combined with the tumor cells. The preparation method of the junctional complex is characterized in that polyethylene glycol is utilized as a raw material to synthesize a heterobifunctional polyethylene glycol derivative, wherein one end of the heterobifunctional polyethylene glycol derivative is carboxyl, and the other end of the heterobifunctional polyethylene glycol derivative is maleimido; and the carboxyl end of the derivative is in covalent connection with the anticancer medicament, the maleimido end of the derivative is in covalent connection with the targeting protein, thus the targeting protein-polyethylene glycol-anticancer medicament junctional complex is obtained.
Owner:CHINA PHARM UNIV

Cancer treatments

InactiveUS20090053302A1Reduce the adverse reactions of the cytotoxic agents without reducing effectivenessEfficient killingBiocideHeavy metal active ingredientsMedicineCancer therapy
The present invention relates to liposome comprising encapsulated oxaliplatin and methods for making encapsulated oxaliplatin. The invention also relates to liposomes comprising oxaliplatin and another anticancer drug. The liposomes of the invention are useful in cancer treatments.
Owner:BOULIKAS PARTHENIOS

Aerosol Drug Inhibition of Lung Cancer

The present invention provides a method of inhibiting growth of lung metastases in an individual comprising the steps of administering a dose of a lipid-drug enhancer liposomal complex and, in sequence, administering a dose of a lipid-anticancer drug liposomal complex. Furthermore, the lipid-drug enhancer liposomal complex may be administered in a continuing dose with the lipid-anticancer drug liposomal complex whereby both liposomal complexes are mixed in the nebulizer. Methods of inhibiting growth of lung metastases in an individual by the sequential administration via aerosolization of a dilauroylphosphatidylcholine-cyclosporin A liposomal complex and a dilauroylphosphatidylcholine-paclitaxel liposomal complex are also provided.
Owner:KNIGHT J VERNON +2

Aerosol drug inhibition of lung metastases

The present invention provides a method of inhibiting growth of lung metastases in an individual comprising the steps of administering a dose of a lipid-drug enhancer liposomal complex and, in sequence, administering a dose of a lipid-anticancer drug liposomal complex. Furthermore, the lipid-drug enhancer liposomal complex may be administered in a continuing dose with the lipid-anticancer drug liposomal complex whereby both liposomal complexes are mixed in the nebulizer. Methods of inhibiting growth of lung metastases in an individual by the sequential administration via aerosolization of a dilauroylphosphatidylcholine-cyclosporin A liposomal complex and a dilauroylphosphatidylcholine-paclitaxel liposomal complex are also provided.
Owner:RES DEVMENT FOUND
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products