Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2733 results about "Cancer therapy" patented technology

Cancer can be treated by surgery, chemotherapy, radiation therapy, hormonal therapy, targeted therapy (including immunotherapy such as monoclonal antibody therapy) and synthetic lethality. The choice of therapy depends upon the location and grade of the tumor and the stage of the disease,...

Targeted and high density drug loaded polymeric materials

Polymeric delivery devices have been developed which combine high loading / high density of molecules to be delivered with the option of targeting. As used herein, “high density” refers to microparticles having a high density of ligands or coupling agents, which is in the range of 1000-10,000,000, more preferably between 10,000 and 1,000,000 ligands per square micron of microparticle surface area. A general method for incorporating molecules into the surface of biocompatible polymers using materials with an HLB of less than 10, more preferably less than 5, such as fatty acids, has been developed. Because of its ease, generality and flexibility, this method has widespread utility in modifying the surface of polymeric materials for applications in drug delivery and tissue engineering, as well other other fields. Targeted polymeric microparticles have also been developed which encapsulate therapeutic compounds such as drugs, cellular materials or components, and antigens, and have targeting ligands directly bound to the microparticle surface. Preferred applications include use in tissue engineering matrices, wound dressings, bone repair or regeneration materials, and other applications where the microparticles are retained at the site of application or implantation. Another preferred application is in the use of microparticles to deliver anti-proliferative agents to the lining of blood vessels following angioplasty, transplantation or bypass surgery to prevent or decrease restenosis, and in cancer therapy. In still another application, the microparticles are used to treat or prevent macular degeneration when administered to the eye, where agents such as complement inhibitors are administered.
Owner:YALE UNIV

Methods of treatment using anti-ErbB antibody-maytansinoid conjugates

ActiveUS7097840B2Superior clinical activityBetter objective response rateOrganic active ingredientsPharmaceutical delivery mechanismMedicineCancer therapy
The application concerns methods of treatment using anti-ErbB receptor antibody-maytansinoid conjugates, and articles of manufacture suitable for use in such methods. In particular, the invention concerns ErbB receptor-directed cancer therapies, using anri-ErbB receptor antibody-maytansinoid conjugates.

Method for the generation of antigen-specific lymphocytes

InactiveUS20070116690A1Function increaseEnhancing function of T cellBiocideVirusesAutoimmune conditionAutoimmune disease
The invention provides systems and methods for the generation of lymphocytes having a unique antigen specificity. In a preferred embodiment, the invention provides methods of virally infecting cells from bone marrow with one or more viral vectors that encode antigen-specific antibodies for the production of, for example B cells and T cells. In some embodiments, the viral vectors include an IRES or 2A element to promote separation of, for example, the α subunit and β subunit of a T cell receptor (TCR) or heavy and light chains of a B-cell antibody. The resulting lymphocytes, express the particular antibody that was introduced in the case of B cells and TCR in the case of T cells. The lymphocytes generated can be used for a variety of therapeutic purposes including the treatment of various cancers and the generation of a desired immune response to viruses and other pathogens. The resulting cells develop normally and respond to antigen both in vitro and in vivo. We also show that it is possible to modify the function of lymphocytes by using stem cells from different genetic backgrounds. Thus our system constitutes a powerful tool to generate desired lymphocyte populations both for research and therapy. Future applications of this technology may include treatments for infectious diseases, such as HIV / AIDS, cancer therapy, allergy, and autoimmune disease.
Owner:CALIFORNIA INST OF TECH

Pox virus containing DNA encoding a cytokine and/or a tumor associated antigen

Attenuated recombinant viruses containing DNA coding for a cytokine and / or a tumor associated antigen, as well as methods and compositions employing the viruses, are disclosed and claimed. The recombinant viruses can be NYVAC or ALVAC recombinant viruses. The DNA can code for at least on of: human tumor necrosis factor; nuclear phosphoprotein p53, wildtype or mutant; human melanoma-associated antigen; IL-2; IFNgamma; IL-4; GNCSF; IL-12; B7; erb-B-2 and carcinoembryonic antigen. The recombinant viruses and gene products therefrom are useful for cancer therapy.
Owner:VIROGENETICS

Methods of treatment with drug loaded polymeric materials

Polymeric microparticles have been developed which encapsulate therapeutic compounds such as drugs, cellular materials or components, and antigens, and can have targeting ligands directly bound to the microparticle surface. Preferred applications include use in tissue engineering matrices, wound dressings, bone repair or regeneration materials, and other applications where the microparticles are retained at the site of application or implantation. Another preferred application is in the use of microparticles to deliver anti-proliferative agents to the lining of blood vessels following angioplasty, transplantation or bypass surgery to prevent or decrease restenosis, and in cancer therapy. In still another application, the microparticles are used to treat or prevent macular degeneration when administered to the eye, where agents such as complement inhibitors are administered.
Owner:YALE UNIV

Methods for the identification, assessment, and treatment of patients with cancer therapy

The present invention is directed to the identification of predictive markers that can be used to determine whether patients with cancer are clinically responsive or non-responsive to a therapeutic regimen prior to treatment. In particular, the present invention is directed to the use of certain individual and / or combinations of predictive markers, wherein the expression of the predictive markers correlates with responsiveness or non-responsiveness to a therapeutic regimen. Thus, by examining the expression levels of individual predictive markers and / or predictive markers comprising a marker set, it is possible to determine whether a therapeutic agent, or combination of agents, will be most likely to reduce the growth rate of tumors in a clinical setting.
Owner:MILLENNIUM PHARMA INC

Synchronized x-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises an X-ray system that is orientated to provide X-ray images of a patient in the same orientation as viewed by a proton therapy beam, is synchronized with patient respiration, is operable on a patient positioned for proton therapy, and does not interfere with a proton beam treatment path. Preferably, the synchronized system is used in conjunction with a negative ion beam source, synchrotron, and / or targeting method apparatus to provide an X-ray timed with patient respiration and performed immediately prior to and / or concurrently with particle beam therapy irradiation to ensure targeted and controlled delivery of energy relative to a patient position resulting in efficient, precise, and / or accurate noninvasive, in-vivo treatment of a solid cancerous tumor with minimization of damage to surrounding healthy tissue in a patient using the proton beam position verification system.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Cancer treatments

Methods and compositions for treating cancers characterized by death-resistant cancer cells are described. In general, such methods involve administration of a therapeutically effective amount of a compound that induces mitotic catastrophe in the some, and preferably most or all, of the cancerous cells. Methods for assessing the efficacy of such treatments are also provided.
Owner:CEPHALON INC

Isolation and use of solid tumor stem cells

A small percentage of cells within an established solid tumor have the properties of stem cells. These solid tumor stem cells give rise both to more tumor stem cells and to the majority of cells in the tumor that have lost the capacity for extensive proliferation and the ability to give rise to new tumors. The solid tumor heterogeneity reflects the presence of tumor cell progeny arising from a solid tumor stem cell. This discovery is the basis for solid tumor stem cell compositions, methods for distinguishing functionally different populations of tumor cells, methods for using these tumor cell populations for studying the effects of therapeutic agents on tumor growth, and methods for identifying and testing novel anti-cancer therapies directed to solid tumor stem cells.
Owner:RGT UNIV OF MICHIGAN

Targeting cdk4 and cdk6 in cancer therapy

ActiveUS20110009353A1Decreased cell growthGreat susceptibilityBiocideSugar derivativesCancer cellCell Cycle Inhibition
The invention involves methods of inhibiting the cancer cell cycle to make cancer cells more susceptible to chemotherapeutic agents. In particular, inhibition of CDK4 and / or CDK6 inhibits cell cycle progression in cancer cells. When combined with chemotherapy such cell cycle inhibition can effectively treat even aggressive cancer types that are drug-resistant and intractable to most chemotherapies.
Owner:CORNELL UNIVERSITY

Elongated lifetime x-ray method and apparatus used in conjunction with a charged particle cancer therapy system

The system uses an X-ray imaging system having an elongated lifetime. Further, the system uses an X-ray beam that lies in substantially the same path as a charged particle beam path of a particle beam cancer therapy system. The system creates an electron beam that strikes an X-ray generation source located proximate to the charged particle beam path. By generating the X-rays near the charged particle beam path, an X-ray path running collinear, in parallel with, and / or substantially in contact with the charged particle beam path is created. The system then collects X-ray images of localized body tissue region about a cancerous tumor. Since, the X-ray path is essentially the charged particle beam path, the generated image is usable for precisely target the tumor with a charged particle beam.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Method and apparatus for sorting biological cells with a MEMS device

A micromechanical actuator for sorting hematopoietic stem cells for use in cancer therapies. The actuator operates by diverting cells into one of a number of possible pathways fabricated in the fabrication substrate of the micromechanical actuator, when fluorescence is detected emanating from the cells. The fluorescence results from irradiating the cells with laser light, which excites a fluorescent tag attached to the cell. The micromechanical actuator thereby sorts the cells individually, with an operation rate of 3.3 kHz, however with the massively parallel 1024-fold device described herein, a throughput of 3.3 million events / second is achievable.
Owner:OWL BIOMEDICAL

Compositions and methods for cancer immunotherapy

The invention relates to immunotherapeutic compounds and to methods for stimulating an immune response in a subject individual at risk for developing cancer, diagnosed with a cancer, in treatment for cancer, or in post-therapy recovery from cancer or the compounds of the invention can be administered as a prophylactic to a subject individual to prevent or delay the development of cancer.
Owner:EISIA R&D MANAGEMENT CO LTD

Charged particle cancer therapy and patient positioning method and apparatus

The invention comprises a laying, semi-vertical, or seated patient positioning, alignment, and / or control method and apparatus used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. Patient positioning constraints are used to maintain the patient in a treatment position, including one or more of: a seat support, a back support, a head support, an arm support, a knee support, and a foot support. One or more of the positioning constraints are movable and / or under computer control for rapid positioning and / or immobilization of the patient. The system optionally uses an X-ray beam that lies in substantially the same path as a proton beam path of a particle beam cancer therapy system. The generated image is usable for: fine tuning body alignment relative to the proton beam path, to control the proton beam path to accurately and precisely target the tumor, and / or in system verification and validation.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Cancer stem cell expression patterns and compounds to target cancer stem cells

Described herein are therapeutic targets expressed in cancer stem cells and methods for treating and diagnosing cancer by targeting such cells with antibodies, compounds, nucleic acid, or other therapeutic agent. In one embodiment described herein, therapeutic agents for the treatment of cancer are provided based on the identification of cancer stem cell targets. The present invention also includes therapeutic targets for cancer therapy and cancer stem cell-targeted therapy. The invention includes the treatment of cancer by the administration of compounds or agents that target cancer stem cells.
Owner:THE JOHNS HOPKINA UNIV

Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises an X-ray system that is orientated to provide X-ray images of a patient in the same orientation as viewed by a proton therapy beam, is synchronized with patient respiration, is operable on a patient positioned for proton therapy, and does not interfere with a proton beam treatment path. Preferably, the synchronized system is used in conjunction with a negative ion beam source, synchrotron, and / or targeting method apparatus to provide an X-ray timed with patient respiration and performed immediately prior to and / or concurrently with particle beam therapy irradiation to ensure targeted and controlled delivery of energy relative to a patient position resulting in efficient, precise, and / or accurate noninvasive, in-vivo treatment of a solid cancerous tumor with minimization of damage to surrounding healthy tissue in a patient using the proton beam position verification system.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Targeted combination immunotherapy of cancer and infectious diseases

The present invention is directed to methods for treating cancer wherein more than one therapeutic agent is used, with each of the therapeutic agents having different tumor-killing capabilities, and wherein the therapeutic agents are delivered to the tumor sites using combined targeting and pre-targeting methods. The methods of the present invention achieve good tumor to non-tumor ratios of the therapeutic agents, and are effective for cancer therapy.
Owner:IMMUNOMEDICS INC

High-frequency electroporation for cancer therapy

ActiveUS20120109122A1Enhanced couplingMore predictable and uniform treatment outcomesElectrotherapySurgical instruments for heatingDiseaseAdjuvant
The present invention relates to the field of biomedical engineering and medical treatment of diseases and disorders. Methods, devices, and systems for in vivo treatment of cell proliferative disorders are provided. In embodiments, the methods comprise the delivery of high-frequency bursts of bipolar pulses to achieve the desired modality of cell death. More specifically, embodiments of the invention relate to a device and method for destroying aberrant cells, including tumor tissues, using high-frequency, bipolar electrical pulses having a burst width on the order of microseconds and duration of single polarity on the microsecond to nanosecond scale. In embodiments, the methods rely on conventional electroporation with adjuvant drugs or irreversible electroporation to cause cell death in treated tumors. The invention can be used to treat solid tumors, such as brain tumors.
Owner:VIRGINIA TECH INTPROP INC

Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises an ion beam focusing method and apparatus used as part of an ion beam injection system, which is used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. The ion beam focusing system includes two or more electrodes where one electrode of each electrode pair partially obstructs the ion beam path with conductive paths, such as a conductive mesh. In a given electrode pair, electric field lines, running between the conductive mesh of a first electrode and a second electrode, provide inward forces focusing the negative ion beam. Multiple such electrode pairs provide multiple negative ion beam focusing regions.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Multi-field charged particle cancer therapy method and apparatus

The invention comprises a multi-field charged particle irradiation method and apparatus. Radiation is delivered through an entry point into the tumor and Bragg peak energy is targeted to a distal or far side of the tumor from an ingress point. Delivering Bragg peak energy to the distal side of the tumor from the ingress point is repeated from multiple rotational directions. Preferably, beam intensity is proportional to radiation dose delivery efficiency. Preferably, the charged particle therapy is timed to patient respiration via control of charged particle beam injection, acceleration, extraction, and / or targeting methods and apparatus. Optionally, multi-axis control of the charged particle beam is used simultaneously with the multi-field irradiation. Combined, the system allows multi-field and multi-axis charged particle irradiation of tumors yielding precise and accurate irradiation dosages to a tumor with distribution of harmful irradiation energy about the tumor.
Owner:GEORGIA TECH RES CORP

Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises a semi-vertical or seated patient positioning, alignment, and / or control method and apparatus used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. Patient positioning constraints are used to maintain the patient in a treatment position, including one or more of: a seat support, a back support, a head support, an arm support, a knee support, and a foot support. One or more of the positioning constraints are movable and / or under computer control for rapid positioning and / or immobilization of the patient. The system optionally uses an X-ray beam that lies in substantially the same path as a proton beam path of a particle beam cancer therapy system. The generated image is usable for: fine tuning body alignment relative to the proton beam path, to control the proton beam path to accurately and precisely target the tumor, and / or in system verification and validation.
Owner:BALAKIN VLADIMIR

Charged particle cancer therapy and patient breath monitoring method and apparatus

The invention comprises a patient respiration monitoring and / or control method and apparatus used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. The respiration monitoring system uses thermal and / or force sensors to determine where a patient is in a respiration cycle in combination with a feedback signal control delivered to the patient to inform the patient when breath control is required. The resulting breath control is timed with charged particle delivery to the tumor to enhance accuracy, precision, and / or efficiency of tumor treatment.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Charged particle cancer therapy imaging method and apparatus

The invention relates to a method and apparatus for treatment of a solid tumor. More particularly, the invention comprises a multi-axis and / or multi-field charged particle cancer therapy system. In one embodiment, the tumor is imaged from multiple directions in phase with patient respiration. The two-dimensional images are combined to produce a three-dimensional picture of the tumor relative to patient features. The resulting three-dimensional image is used in generation of a radiation treatment plan and subsequent radiation therapy with the radiation beam in terms of control of two-dimensional beam trajectory, delivered beam energy, delivered beam intensity, and / or beam velocity each as a function of patient vertical translation position, patient rotation position, and / or patient respiration.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises a negative ion source method and apparatus used as part of an ion beam injection system, which is used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. The negative ion source preferably includes an inlet port for injection of hydrogen gas into a high temperature plasma chamber. In one embodiment, the plasma chamber includes a magnetic material, which provides a magnetic field barrier between the high temperature plasma chamber and a low temperature plasma region on the opposite side of the magnetic field barrier. An extraction pulse is applied to a negative ion extraction electrode to pull the negative ion beam into a negative ion beam path, which proceeds through a first partial vacuum system, through an ion beam focusing system, into the tandem accelerator, and into a synchrotron.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises a charged particle beam acceleration and / or extraction method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Novel design features of a synchrotron are described. Particularly, turning magnets, edge focusing magnets, and extraction elements are described that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allow continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Combination therapy for treating, preventing or managing proliferative disorders and cancers

The present invention relates to methods and compositions designed for the treatment, management or prevention of cancer. The methods of the invention comprise the administration of an effective amount of one or more inhibitors of JNK in combination with the administration of an effective amount of one or more other agents useful for cancer therapy. The invention also provides pharmaceutical compositions comprising one or more inhibitors of JNK in combination with one or more other agents useful for cancer therapy. In particular, the invention is directed to methods of treatment and prevention of cancer by the administration of an effective amount of one or more inhibitors of JNK in combination with standard and experimental chemotherapies, hormonal therapies, bone marrow transplants, stem cell replacement therapies, biological therapies / immunotherapies and / or radiation therapies for treatment or prevention of cancer. Also included are methods of treatment of cancer by the administration of one or more inhibitors of JNK in combination with surgery, alone or in further combination with standard and experimental chemotherapies, hormonal therapies, bone marrow transplants, stem cell replacement therapies, biological therapies / immunotherapies and / or radiation therapies.
Owner:SIGNAL PHARMA LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products