Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

68 results about "Beam trajectory" patented technology

Charged particle cancer therapy imaging method and apparatus

The invention relates to a method and apparatus for treatment of a solid tumor. More particularly, the invention comprises a multi-axis and / or multi-field charged particle cancer therapy system. In one embodiment, the tumor is imaged from multiple directions in phase with patient respiration. The two-dimensional images are combined to produce a three-dimensional picture of the tumor relative to patient features. The resulting three-dimensional image is used in generation of a radiation treatment plan and subsequent radiation therapy with the radiation beam in terms of control of two-dimensional beam trajectory, delivered beam energy, delivered beam intensity, and / or beam velocity each as a function of patient vertical translation position, patient rotation position, and / or patient respiration.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Electron beam projection lithography system (EBPS)

Numerous largely unpredictable criticalities of operating parameters arise in electron beam projection lithography systems to maintain throughput comparable to optical projection lithography systems as minimum feature size is reduced below one-half micron and resolution requirements are increased. Using an electron beam projection lithography system having a high emittance electron source, variable axis lenses, curvilinear beam trajectory and constant reticle and / or target motion in a dual scanning mode wherein the target and / or wafer is constantly moved orthogonally to the direction of beam scan, high throughput is obtained consistent with 0.1 mu m feature size ground rules utilizing a column length of greater than 400 mm, a beam current of between about 4 and 35 mu A, a beam energy of between about 75 and 175 kV, a sub-field size between about 0.1 and 0.5 mm at the target at an optical reduction factor between about 3:1 and 5:1, a numerical aperture greater than 2 mrad and preferably between about 3 and 8 mrad and a scan length between about 20 mm and 55 mm. Reticle and target speed preferably differ by about the optical reduction factor.
Owner:IBM CORP

Laser processing systems and methods for beam dithering and skiving

A laser processing system includes a first positioning system for imparting first relative movement of a beam path along a beam trajectory with respect to a workpiece, a processor for determining a second relative movement of the beam path along a plurality of dither rows, a second positioning system for imparting the second relative movement, and a laser source for emitting laser beam pulses. The system may compensate for changes in processing velocity to maintain dither rows at a predetermined angle. For example, the dither rows may remain perpendicular to the beam trajectory regardless of processing velocity. The processing velocity may be adjusted to process for an integral number of dither rows to complete a trench. A number of dither points in each row may be selected based on a width of the trench. Fluence may be normalized by adjusting for changes to processing velocity and trench width.
Owner:ELECTRO SCI IND INC

Multi-axis/multi-field charged particle cancer therapy method and apparatus

The invention relates to a method and apparatus for treatment of solid cancer. More particularly, the invention comprises a multi-axis and / or multi-field raster beam charged particle cancer therapy system. The system independently controls patient translation position, patient rotation position, two-dimensional beam trajectory, delivered beam energy, delivered beam intensity, beam movement velocity, timing of charged particle delivery, and / or distribution of radiation striking healthy tissue. The system operates in conjunction with a negative ion beam source, synchrotron, patient positioning, imaging, and / or targeting method and apparatus to deliver an effective and uniform dose of radiation to a tumor while distributing radiation striking healthy tissue.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Radial scan arm and collimator for serial processing of semiconductor wafers with ribbon beams

Semiconductor wafers are sequentially mounted on a holder at one end of an arm which is pivoted about its other end. Each wafer is thereby passed on an arcuate path through a parallel-scanned or continuous ribbon-shaped beam for processing. The pivot axis is parallel to the centroid of the beam trajectories. By pre-orienting the wafers before loading, and by providing a second pivot between the arm and the holder, the angle between the beam and the wafer surface may be precisely adjusted to any arbitrary angle of interest. The geometry is such that this angle is constant over the processed area. Uniform processing requires a scanned ribbon beam to have a non-uniform scan velocity and a continuous ribbon beam to have a non-uniform intensity profile. The required non-uniformity is generated by a suitably shaped collimating magnet. When a suitable ribbon beam is unavailable, a beam of approximately circular shape may be used by translating the pivot axis, thereby moving the wafer in a two-dimensional pattern through the beam.
Owner:ADVANCED ION BEAM TECHNOLOGY INC

Volumetric modulated arc therapy (VMAT) with non-coplanar trajectories

A method includes determining a set of candidate beam directions. The radiation therapy method further includes selecting a sub-set of non-coplanar beam directions of interest from the set of candidate beam directions based on a fluence optimization using a beam angle selection algorithm. The radiation therapy method further includes determining a set of delivery options based on a beam trajectory algorithm, wherein the delivery options at least include a non-coplanar trajectory during radiation treatment delivery. The radiation therapy method further includes optimizing the delivery options to generate a VMAT radiation plan with non-coplanar beam trajectories. The optimizing of the delivery options includes optimizing at least one machine parameter.
Owner:KONINKLJIJKE PHILIPS NV +1

Multibeam electronic tube with magnetic field for correcting beam trajectory

InactiveUS6486605B1Degrading gainDegrading efficiency characteristicTravelling-wave tubesTransit-tube focussing arrangementsKlystronBeam trajectory
A multibeam electron tube with several approximately parallel electron beams passing through a body. Among the beams, at least some define an interbeam volume, each beam defining the interbeam volume being subjected to a perturbing azimuthal magnetic field induced by all the other beams. The tube includes an element allowing, in at least one conducting element located in the interbeam volume, flow of a reverse current in the opposite direction to that of the current of the beams, this reverse current generating, in the beams defining the interbeam space, a magnetic correction field whose purpose is to oppose the perturbing magnetic field. Exemplary embodiments of the present invention especially apply to the multibeam klystrons or traveling wave tubes.
Owner:THOMSON TUBES ELECTRONIQUES

Trajectory Optimization in Radiotherapy Using Sectioning

ActiveUS20170354832A1Avoids degradation of trajectory optimization qualityOptimal trajectoryX-ray/gamma-ray/particle-irradiation therapyPatient modelBeam trajectory
A radiation therapy treatment method includes providing a patient model, dosimetric constraints, delivery motion constraints, and delivery coordinate space of a radiation delivery device, where the delivery coordinate space is represented as a mesh with vertices connected by edges, where the vertices correspond to directions of a beam eye view (BEV) of the radiation delivery device, where each BEV has corresponding area elements resulting from beam collimation. BEV region connectivity manifolds are constructed from the patient model, the dosimetric constraints, the delivery coordinate space, and existing beam trajectories, wherein each of the BEV region connectivity manifolds represents connections between contiguous 2D target regions, where each of the 2D target regions is defined at each of the vertices of the delivery coordinate space. Beam trajectories are selected based on region connectedness information in the BEV region connectivity manifolds, the dosimetric constraints, the delivery motion constraints, and the existing beam trajectories. Radiation is delivered using the radiation delivery device in accordance with the beam trajectories.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Spectroscopy data display systems and methods

Spectroscopy data are correlated to physical locations on a sample. A laser beam is scanned along a beam trajectory relative to the sample located in a sample chamber. The laser beam disassociates material from the sample along the beam trajectory to produce an aerosol of the disassociated material within the sample chamber. A fluid is passed through the sample chamber to transport the disassociated material to a spectrometer for determining spectroscopy data values of a selected element along the beam trajectory. The spectroscopy data values are correlated with respective locations of the sample along the beam trajectory, and an image is displayed of at least a portion of the sample including the respective locations along the beam trajectory where the material was disassociated by the laser beam. The image includes indicia of the spectroscopy data values at their correlated locations.
Owner:ELEMENTAL SCI LASERS LLC

Symmetric beamline and methods for generating a mass-analyzed ribbon ion beam

Ion implantation systems and beamlines therefor are disclosed, in which a ribbon beam of a relatively large aspect ratio is mass analyzed and collimated to provide a mass analyzed ribbon beam for use in implanting one or more workpieces. The beamline system comprises two similar magnets, where the first magnet mass analyzes the ribbon beam to provide an intermediate mass analyzed ion beam, and the second magnet collimates the intermediate beam to provide a uniform mass analyzed ribbon beam to an end station. The symmetrical system provides equidistant beam trajectories for ions across the elongated beam width so as to mitigate non-linearities in the beam transport through the system, such that the resultant mass analyzed beam is highly uniform.
Owner:AXCELIS TECHNOLOGIES

Ion implantation apparatus and ion implantation method

An ion implantation apparatus according to the invention includes a park electrode as a deflecting apparatus arranged at a section of a beam line from an outlet of a mass analysis magnet apparatus to a front side of a mass analysis slit for deflecting an ion beam in a predetermined direction of being deviated from a beam trajectory line by an operation of an electric field. When the ion beam does not satisfy a desired condition, a park voltage is applied to the park electrode, thereby, the ion beam is brought into an evacuated state by being deflected from the beam trajectory line. As a result, the ion beam cannot pass through the mass analysis slit, and therefore, the ion beam which does not arrive at a wafer to prevent the ion beam which does not satisfy the condition from being irradiated to the wafer.
Owner:SENCORP

Method for enhancing axial focusing in central region of cyclotron

The invention discloses a method for enhancing axial focusing in a central region of a cyclotron. Through a special magnet structure, a magnetic field of which the field strength slightly decreases with the radius is constructed in 5-15 circles of a beam trajectory, and the negative gradient of the magnetic field is utilized to provide an axial focusing effect of the magnetic field; by changing aDEE plate and a Dummy DEE profile within the range of 1-5 circles of the beam trajectory, the positions of acceleration gaps are further moved, the phase where a beam enters each acceleration gap is changed, so that the beam enters the acceleration gaps when an alternating electric field reaches a peak value and leaves the acceleration gaps at a falling edge of the alternating electric field, andthus an axial focusing effect of the electric field is generated. The method disclosed by the invention has a simple principle, and by reasonably planning the cyclotron structure, the cyclotron can construct a proper electromagnetic field distribution, and the axial focusing in the central region of an isochronous cyclotron can be effectively enhanced.
Owner:HEFEI CAS ION MEDICAL & TECHNICAL DEVICES CO LTD

Multi-column electron beam lithography apparatus and electron beam trajectory adjustment method for the same

A multi-column electron beam lithography apparatus includes multiple columns, each including a mask having several aperture patterns; a selective deflector to deflect an electron beam to select an aperture pattern; a bending back deflector to bend the beam passed through the pattern back to the column optical axis; and an electron beam trajectory adjustment unit to adjust deflection efficiencies of the deflectors without the mask installed to allow the beam deflected toward any positions in a deflection region to be bent back and applied to the same position on a sample, and to adjust the deflection efficiency of the selective deflector with the mask installed to allow the beam to be deflected toward any pattern of the mask, while maintaining a relationship between the deflection efficiencies.
Owner:ADVANTEST CORP

A particle beam application device and an irradiation device as well as a method for guiding a particle beam

The invention relates to a particle beam application device for directing a particle beam at a target volume for irradiating the target volume. A beam shaping device which can be disposed in a beam path of the particle beam shapes a cross-sectional profile of the particle beam, the beam shaping device being implemented such that, after shaping, the particle beam has a line-like cross-sectional profile. A controller varies the relative position of the particle beam and target volume during an irradiation run, the controller being implemented such that, by changing the relative position, the particle beam with the line-like cross-sectional profile can be scanned over the target volume to be irradiated. A line-like cross-sectional profile of a particle beam is formed for guiding a particle beam. A trajectory of the particle beam is variably changed in a direction parallel to the beam trajectory direction.
Owner:SIEMENS AG

Cantilever beam robustness self-adaptation control method

The invention discloses a cantilever beam robustness self-adaptation control method. An ideal cantilever beam dynamic model is designed and contains frequency signals rich enough to serve as a reference trajectory of a system, it is guaranteed that the actual cantilever beam trajectory can track the reference trajectory for the whole self-adaptation control system, an ideal dynamic property is realized, and compensation of manufacturing errors and environment disturbance is achieved. The parameters of a cantilever beam are taken as unknown system parameters, a parameter error vector theta is formed, a slip form function is designed, the derivative of the slip form function is made to be zero, an equivalent controller is obtained, a feedback term and a robustness term serve as an input signal on this basis, the self-adaptation rule of the parameter theta of the controller is designed based on the Lyapunov method, the stability of the system is guaranteed, tracking error is converged to zero, and all the parameters are converged to true values.
Owner:HOHAI UNIV CHANGZHOU

Charged particle beam trajectory corrector and charged particle beam apparatus

The invention relates to a trajectory correction method for a charged particle beam, and provides a low-cost, high accuracy and high-resolution converging optical system for use with a charged particle beam to solve problems with conventional aberration correction systems. To this end, the present invention uses a configuration which forms electromagnetic field which is concentrated towards a center of a beam trajectory axis, causes oblique of the beam to make use of lens effects and bend the trajectory, and consequently, cancels out large external side non-linear effects such a spherical aberration of the electron lens. Specifically, the configuration generates an electric field concentration in a simple manner by providing electrodes above the axis and applying voltages to the electrodes. Further, the above configuration can be realized trough operations using lenses and deflectors with incident axes and image formation positions that are normal.
Owner:HITACHI HIGH-TECH CORP

Beam deflecting method, beam deflector for scanning, ion implantation method, and ion implantation system

A beam deflector for scanning performs deflecting of a charged particle beam having a regular trajectory in a vacuum space to thereby periodically change the trajectory of the charged particle beam. The beam deflector comprises a pair of deflection electrodes disposed so as to confront each inner electrode surface having a symmetrical concave extending in a direction of a beam trajectory.
Owner:SENCORP

Laser beam centering and pointing system

ActiveUS20100188669A1Fast convergenceMinimizing residual centeringUsing optical meansBeam trajectoryOptical instrument
An optical instrument aligns an optical beam without the need for physical intervention of the instrument within the apparatus or platforms from which the trajectory of the beam to be ascertained. The alignment apparatus and method enable the desired function to be realized without the placement of physical apertures or sensors directly in the path of the beam through the system whose spatial position and slope is to be sought. An image plane provides the observer with a pair of well-defined images that are indicative of the beam centering and pointing alignment parameters. The optical alignment can be realized without the need for referencing to an external or fixed set of coordinates or fiducials. The instrument can therefore service situations where adverse environments would otherwise prohibit the use of such instruments, including regions of high radiation, high temperature, vacuum and / or cryogenic atmospheres.
Owner:LAWRENCE LIVERMORE NAT SECURITY LLC

Charged Particle Optics with Azimuthally-Varying Third-Order Aberrations for Generation of Shaped Beams

A charged particle shaped beam column includes: an objective lens configured to form a charged particle shaped beam on the surface of a substrate, wherein the disk of least confusion of the objective lens does not coincide with the surface of the substrate; an optical element with 8N poles disposed radially symmetrically about the optic axis of the column, the optical element being positioned between a condenser lens and the objective lens, wherein integer N1; and a power supply applying excitations to the optical element's 8N poles to provide an octupole electromagnetic field. The octupole electromagnetic field induces azimuthally-varying third-order deflections to beam trajectories passing through the 8N-pole optical element. By controlling the excitation of the 8N poles a shaped beam, such as a square beam, can be formed at the surface of the substrate.
Owner:PARKER N WILLIAM

Tracking of tumor location for targeted radiation treatment

Systems, methods, and apparatuses are provided for targeting diseased tissue with a radiation beam. Functional models can be used to accurately obtain a location of specific tissue using sensors at identifiable locations of the patient's body. Using the relative distances between the identifiable sensor locations can allow a patient to be in various positions. The functional models can be prepared using accurate pre-treatment scans, which can be taken at various body positions (e.g., rotations and / or translations). The trajectory of the beam can be measured efficiently and accurately using beam sensors attached to a beam assembly, where a model maps the beam sensor locations to a trajectory of the beam. Further, a motion model can use measurements made during treatment to obtain a time-dependent functions of the movement of the specific tissue, the change of an optimal beam trajectory over time, or the change in input commands to a beam positioner.
Owner:HEADWATER PARTNERS I

Multi-axis / multi-field charged particle cancer therapy method and apparatus

The invention relates to method and apparatus for treatment of solid cancer. More particularly, the invention comprises a multi-axis and / or multi-field charged particle cancer therapy system. The system independently controls patient translation position, patient rotation position, two-dimensional beam trajectory, delivered beam energy, delivered beam intensity, timing of charged particle delivery, and / or distribution of radiation striking healthy tissue. The system operates in conjunction with a negative ion beam source, synchrotron, patient positioning, imaging, and / or targeting method and apparatus to deliver an effective and uniform dose of radiation to a tumor while distributing radiation striking healthy tissue.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Electron generation using a fluorescent element and image forming using such electron generation

An image forming apparatus using an electron source which has matrix-wired electron-emitting devices connected with wiring electrodes of conductive material, and a fluorescent member as an image forming member with an accelerating electrode on its inner surface side, opposite to the electron-emitting devices. The wiring electrodes include a wiring electrode where a semiconductive support member (spacer) is provided via a conductive connection member and a wiring electrode where the semiconductive support member is not provided. The height of the upper surface of the conductive connection member on which the semiconductive support member is provided and that of the upper surface of the wiring electrode where the semiconductive support member is not provided are the same, to prevent shift of electron-beam trajectories around the semiconductive support member, due to disturbance of electric-field distribution.
Owner:CANON KK

Systems And Methods For Reducing Off-Axis Optical Aberrations In Wavelength Dispersed Devices

ActiveUS20130177272A1Reducing off-axis optical aberrationReduce polarizationCoupling light guidesFiberGrism
Through its higher refractive index, a silicon grism can be used to reduce the Described herein are systems and methods for reducing optical aberrations in an optical system to decrease polarization dependent loss. Embodiments are provided particularly to define beam trajectories through an optical switching system which reduce off-axis aberrations. In one embodiment, a silicon grism is provided for reducing the curvature of the focal plane at an LCOS device in a wavelength selective switch (WSS) such that the separated polarization states converge at the LCOS at substantially the same point along the optical axis for all wavelengths. In this embodiment, an axial offset at the LCOS device will not produce large PDL at the coupling fibers. In another embodiment, a coupling lens having an arcuate focusing region is provided to address an offset in the optical beams, such that the separated polarization states couple symmetrically to respective output fibers.
Owner:II VI DELAWARE INC

Charged particle optics with azimuthally-varying third-order aberrations for generation of shaped beams

A charged particle shaped beam column includes: a charged particle source; a gun lens configured to provide a charged particle beam approximately parallel to the optic axis of the column; an objective lens configured to form the charged particle shaped beam on the surface of a substrate, wherein the disk of least confusion of the objective lens does not coincide with the surface of the substrate; an optical element with 8N poles disposed radially symmetrically about the optic axis of the column, the optical element being positioned between the condenser lens and the objective lens, wherein N is an integer greater than or equal to 1; and a power supply configured to apply excitations to the 8N poles of the optical element to provide an octupole electromagnetic field. The octupole electromagnetic field is configured to induce azimuthally-varying third-order deflections to the beam trajectories passing through the 8N-pole optical element. By controlling the excitation of the 8N poles a shaped beam, such as a square beam, can be formed at the surface of the substrate. The 8N-pole element can be magnetic or electrostatic.
Owner:MULTIBEAM CORP +1

Charged particle optics with azimuthally-varying third-order aberrations for generation of shaped beams

A charged particle shaped beam column includes: a charged particle source; a gun lens configured to provide a charged particle beam approximately parallel to the optic axis of the column; an objective lens configured to form the charged particle shaped beam on the surface of a substrate, wherein the disk of least confusion of the objective lens does not coincide with the surface of the substrate; an optical element with 8N poles disposed radially symmetrically about the optic axis of the column, the optical element being positioned between the condenser lens and the objective lens, wherein N is an integer greater than or equal to 1; and a power supply configured to apply excitations to the 8N poles of the optical element to provide an octupole electromagnetic field. The octupole electromagnetic field is configured to induce azimuthally-varying third-order deflections to the beam trajectories passing through the 8N-pole optical element. By controlling the excitation of the 8N poles a shaped beam, such as a square beam, can be formed at the surface of the substrate. The 8N-pole element can be magnetic or electrostatic.
Owner:MULTIBEAM CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products