Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

97results about "Magnetic induction accelerators" patented technology

Charged particle accelerator

The present invention provides a charged particle accelerator comprising a charged particle generating apparatus, a bending magnet, accelerating means and a vacuum duct, wherein first and second acceleration periods (22), (23) are provided, accelerating electric field of the accelerating means is applied from the start time (25) of the first acceleration period (22) until the end time of the second acceleration period (23), and bending magnetic field is applied at a fixed value during the first accelerating period while, during the second acceleration period, it is applied so as to increase until the end time of the second acceleration period. Accordingly, there is provided a compact and high power charged particle accelerator which can perform large-current acceleration.
Owner:MITSUBISHI ELECTRIC CORP

Charged-particle beam accelerator, particle beam radiation therapy system using the charged-particle beam accelerator, and method of operating the particle beam radiation therapy system

A charged-particle beam accelerator includes an RF-KO unit for increasing the amplitude of betatron oscillation of a charged-particle beam within a stable region of resonance and an extraction quadrupole electromagnet unit for varying the stable region of resonance. The RF-KO unit is operated within a frequency range in which the circulating beam does not go beyond a boundary of the stable region of resonance, and the extraction quadrupole electromagnet unit is operated with appropriate timing as required for beam extraction so that the charged-particle beam is extracted with desired timing.
Owner:MITSUBISHI ELECTRIC CORP

Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises a charged particle beam acceleration and / or extraction method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Novel design features of a synchrotron are described. Particularly, turning magnets, edge focusing magnets, and extraction elements are described that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allow continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron

The invention comprises intensity control of a charged particle beam acceleration, extraction, and / or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Particularly, intensity of a charged particle stream of a synchrotron is described. Intensity control is described in combination with turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, and extraction elements of the synchrotron. The system reduces the overall size of the synchrotron, provides a tightly controlled proton beam, directly reduces the size of required magnetic fields, directly reduces required operating power, and allows continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Synchrotron power cycling apparatus and method of use thereof

The invention comprises a charged particle cancer therapy system or synchrotron system using one or more switches to introduce a corresponding one or more resistors into a circuit linking a power supply to a magnet or an inductor during an applied power recovery phase between acceleration cycles of the synchrotron, which reduces time of reduction in power from an active applied power to a power suitable for use with a subsequent injection of charged particles into the synchrotron.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron

The invention comprises intensity control of a charged particle beam acceleration, extraction, and / or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Particularly, intensity of a charged particle stream of a synchrotron is described. Intensity control is described in combination with turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, and extraction elements of the synchrotron. The system reduces the overall size of the synchrotron, provides a tightly controlled proton beam, directly reduces the size of required magnetic fields, directly reduces required operating power, and allows continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises a charged particle beam acceleration, extraction, and / or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Novel design features of a synchrotron are described. Particularly, turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, flat surface incident magnetic field surfaces, and extraction elements are described that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allow continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods

The invention relates generally to treatment of solid cancers. More particularly, the invention relates to enhancing synchrotron acceleration cycle usage efficiency by adjusting the synchrotron's acceleration cycle to correlate with a patient's respiration rate where efficiency refers to the duty cycle or the percentage of acceleration cycles used to deliver charged particles to the tumor. The system senses patient respiration and controls timing of negative ion beam formation, injection of charged particles into a synchrotron, acceleration of the charged particles, and extraction to yield delivery of the particles to the tumor at a predetermine period of the patient's respiration cycle. Independent control of charged particle energy and intensity is maintained during the timed irradiation therapy. Multi-field irradiation ensures efficient delivery of Bragg peak energy to the tumor while spreading ingress energy about the tumor.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Charged particle cancer therapy system magnet control method and apparatus

The invention comprises a charged particle beam acceleration, extraction, and / or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Novel design features of a synchrotron are described. Particularly, turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, and extraction elements are described that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allow continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Charged particle extraction apparatus and method of use thereof

The invention comprises a charged particle beam extraction method and apparatus optionally used in conjunction with charged particle beam radiation therapy of cancerous tumors. The system uses a radio-frequency (RF) cavity system to induce oscillation of a charged particle stream. Sufficient amplitude modulation of the charged particle stream causes the charged particle stream to hit a material, such as a foil element of a set of foils. The foil decreases the energy of the charged particle stream, which decreases a radius of curvature of the charged particle stream in the synchrotron sufficiently to allow a physical separation of the reduced energy charged particle stream from the original charged particle stream where thickness of a selected foil is a function of energy of circulating charged particles. The physically separated charged particle stream is then removed from the system by use of an applied field and deflector.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises a tandem accelerator method and apparatus, which is part of an ion beam injection system used in conjunction with multi-axis charged particle radiation therapy of cancerous tumors. The negative ion beam source includes an injection system vacuum system and a synchrotron vacuum system separated by a foil, where negative ions are converted to positive ions. The foil is sealed to the edges of the vacuum tube providing for a higher partial pressure in the injection system vacuum chamber and a lower pressure in the synchrotron vacuum system. Having the foil physically separating the vacuum chamber into two pressure regions allows for fewer and / or smaller pumps to maintain the lower pressure system in the synchrotron as the inlet hydrogen gas is extracted in a separate contained and isolated space by the injection partial vacuum system.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Support structures for planar insertion devices

InactiveUS7956557B1Prevents detrimental deformation reactionMagnetic induction acceleratorsMagnetsSynchrotronInsertion device
A planar insertion device and supporting structure for a planar insertion device for treating a synchrotron radiation beam includes a primary frame on which at least two secondary C-frames are mounted. An upper and a lower girders are mounted on the secondary C-frames forming a gap between girders and arranged substantially horizontally and parallel to each other and to the synchrotron radiation beam. Magnetic arrays rigidly mounted on the girders are facing each other and facing the gap between girders, with the synchrotron radiation beam passing between the magnetic arrays through the gap. The planar insertion device supporting structure prevents detrimental deformation reactions to variations of magnetic loadings with changes in the gap and subsequent geometrical misalignments.
Owner:ADVANCED DESIGN CONSULTING USA

Charged particle cancer therapy system magnet control method and apparatus

The invention comprises a charged particle beam acceleration, extraction, and / or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Novel design features of a synchrotron are described. Particularly, turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, and extraction elements are described that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allow continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Electromagnetic wave generator

A compact and low-cost electromagnetic wave generator in which X-rays having high intensity can be generated and the energy of generated X-rays can rapidly be switched. In an electromagnetic wave generator including a circular accelerator, a deflection electromagnet incorporated in the circular accelerator focuses injected and accelerated electrons, The circular accelerator produces stable electron closed orbits in a region with a predetermined width in the radial direction of the accelerator that are stable during injection and acceleration of electron. A target is arranged across the stable electron closed orbits and a collision region, where a circulating electron beam collides with the target and a non-collision region where a circulating electron beam does not collide with the target produced. Through control of respective patterns of changes with time in the deflection magnetic field, a given electron closed orbit is shifted between the collision and the non-collision regions, thereby generating X-rays.
Owner:MITSUBISHI ELECTRIC CORP

Modulator for circular induction accelerator

Described herein is a modulator circuit for generating discrete energy pulses in a device. The circuit includes a high voltage power source intermittently coupled to a saturable first inductor, a second inductor and a capacitor coupled in parallel between the high voltage power source and the saturable first inductor and second inductor. When the first inductor is unsaturated, its inductance is high and it isolates the capacitor from the second inductor. When the first inductor saturates, the inductance collapses and the capacitor discharges a high energy pulse into the second coil. By controlling the time to saturation, the timing of the pulses is controlled. The modulator circuit is effective to control pulses applied to a circular induction accelerator, such as a Betatron.
Owner:SCHLUMBERGER TECH CORP

Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises a charged particle beam acceleration, extraction, and / or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Novel design features of a synchrotron are described. Particularly, turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, flat surface incident magnetic field surfaces, and extraction elements are described that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allow continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Particle accelerator and charged particle beam irradiation apparatus including particle accelerator

A particle accelerator that is a synchrocyclotron accelerating charged particles and which includes an acceleration electrode that accelerates the charged particles; a high frequency power source that supplies the electric power to the acceleration electrode; a control unit that adjusts the frequency of the electric power supplied from the high frequency power source based on energy of the charged particle which is accelerated; and a matching circuit that has a coil and a capacitor, and performing impedance matching between the acceleration electrode and the high frequency power source, wherein the matching circuit has an inductance adjustment unit electrically adjusting the inductance of the coil.
Owner:SUMITOMO HEAVY IND LTD

High-temperature superconductive magnet system for magnetically confined plasma propeller

The invention discloses a high-temperature superconductive magnet system for a magnetically confined plasma propeller, which comprises two magnetic mirror units in the same structure, wherein each magnetic mirror unit comprises a Dewar barrel and two high-temperature superconductive magnets; and a refrigerator is used for cooling the two high-temperature superconductive magnets in each magnetic mirror unit. mode by a conductive cooling mode and uses the refrigerator to cool the two superconductive magnets in a conductive manner, so that the high-temperature superconductive magnet system for the magnetically confined plasma propeller greatly simplifies the structure, realizes high vacuum, reduces dependence on liquid nitrogen and high-cost operations, avoids a large-size low-temperature system and equipment used in the low-temperature liquid cooling mode, eliminates risks caused by the evaporation of a low-temperature liquid, cools the magnet to a temperature below 77 K and realizes a high field by increasing the critical current of the magnets, thus a superconductive low-temperature system is compact, efficient, safe and convenient, and is beneficial for integrating a superconductive apparatus with a low-temperature device.
Owner:INST OF PLASMA PHYSICS CHINESE ACAD OF SCI

Cooling systems and methods

An ion therapy system comprises a particle accelerator (1) mounted on a rotatable gantry (2). The particle accelerator includes a superconducting coil (17) which rotates about its axis as the particle accelerator rotates about the gantry axis in use to direct an output beam towards a target from different directions. The particle accelerator is rotatable through (180) degrees to move the beam through a corresponding arc. The particle accelerator includes cooling system arranged to cool the coil as the coil rotates. The superconducting coil (17) is mounted in a coil support (25). The coil is surrounded by a cryogen chamber (32) which is located radially outwardly from the coil (17) on the other side of the support (25). The cryogen chamber is in fluid communication with a cryogen recondensing unit (29) whereby vaporized cryogen may flow from the cryogen chamber (32) to the cryogen recondensing unit (29) to be recondensed in use before returning to the cryogen chamber. Thermally conductive means (40) is arranged to facilitate heat transfer from the superconducting coil (17) to the cryogen chamber (32) to vaporize cryogen contained therein in use and thereby remove heat from the coil.
Owner:TESLA ENG

Treatment delivery control system and method of operation thereof

The invention relates to a method and apparatus for control of a charged particle cancer therapy system. A treatment delivery control system is used to directly control multiple subsystems of the cancer therapy system without direct communication between selected subsystems, which enhances safety, simplifies quality assurance and quality control, and facilitates programming. For example, the treatment delivery control system directly controls one or more of: an imaging system, a positioning system, an injection system, a radio-frequency quadrupole system, a ring accelerator or synchrotron, an extraction system, a beam line, an irradiation nozzle, a gantry, a display system, a targeting system, and a verification system. Generally, the control system integrates subsystems and / or integrates output of one or more of the above described cancer therapy system elements with inputs of one or more of the above described cancer therapy system elements.
Owner:PROTOM INT HLDG CORP

Methods of constructing a betatron vacuum chamber and injector

A betatron structure having a donut-shaped vacuum chamber, wherein the vacuum chamber is made up of two or more pieces bonded together; an injector positioned within the vacuum chamber; and two or more magnets positioned to the outside of the vacuum chamber. A method of manufacturing a betatron structure, including: (a) fabricating two or more pieces; (b) positioning an injector on one of the two or more pieces; and (c) bonding the two or more pieces such that when bonded, the substrates form a hollow donut-shaped chamber.
Owner:SCHLUMBERGER TECH CORP

An electronic linear accelerator and its using method

This invention provides one electron line speeder with multiple gear energy adjusting, which comprises electron gun, speeding structure, microwave power source, isolator and magnetic exciting power, wherein, the speeding structure has two parts separately connected to power align machine through isolator and to get micro wave power from microwave power source; the two sections of speeding structure are connected by magnetic iron in certain microwave phase; through changing magnetic iron sensor intensity to change electron beam track length.
Owner:TSINGHUA UNIV +1

Accelerator system stabilization for charged particle acceleration and radiation beam generation

A method for generating stabilized particle acceleration by a radio-frequency (RF) accelerator is described, comprising operating the accelerator in a warm-up mode during a warm-up time period, without injecting charged particles or without accelerating injected charged particles, and operating the accelerator in a beam-on mode during a beam-on time period after the warm-up time period, to accelerate charged particles injected by the charged particle source. Automatic frequency control to match an expected frequency of the accelerator during the beam-on time period, prior to the start of the beam-on time period, for stability, is also described.
Owner:VAREX IMAGING CORP

All-ion accelerator and control method of the same

It is an object of the present invention to provide an accelerator that can accelerate by itself all ions up to any energy level allowed by the magnetic fields for beam guiding, and provides an all-ion accelerator in which with trigger timing and a charging time of an induced voltage applied to an ion beam injected from a preinjector by induction cells for confinement and acceleration used in an induction synchrotron, digital signal processors for confinement and acceleration and pattern generators for confinement and acceleration generate gate signal patterns for confinement and acceleration on the basis of a passage signal of the ion beam and an induced voltage signal for indicating the value of the induced voltage applied to the ion beam, and intelligent control devices for confinement and acceleration perform feedback control of on / off of the induction cells for confinement and acceleration.
Owner:HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION

Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises a charged particle beam extraction method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. The system uses a radio-frequency (RF) cavity system to induce betatron oscillation of a charged particle stream. Sufficient amplitude modulation of the charged particle stream causes the charged particle stream to hit a material, such as a foil. The foil decreases the energy of the charged particle stream, which decreases a radius of curvature of the charged particle stream in the synchrotron sufficiently to allow a physical separation of the reduced energy charged particle stream from the original charged particle stream. The physically separated charged particle stream is then removed from the system by use of an applied field and deflector.
Owner:BALAKIN ANDREY VLADIMIROVICH +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products