Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2400results about "Beam/ray deflecting arrangements" patented technology

Apparatus for generating a plurality of beamlets

The invention relates to an apparatus for generating a plurality of charged particle beamlets, comprising a charged particle source for generating a diverging charged particle beam, a converging means for refracting said diverging charged particle beam and a lens array comprising a plurality of lenses, wherein said lens array is located between said charged particle source and said converging means.In this way, it is possible to reduce aberrations of the converging means.
Owner:ASML NETHERLANDS BV

Objective lens with deflector plates immersed in electrostatic lens field

One embodiment relates to an objective lens utilizing magnetic and electrostatic fields which is configured to focus a primary electron beam onto a surface of a target substrate. The objective lens includes a magnetic pole piece and an electrostatic deflector configured within the pole piece. An electrostatic lens field is determined by the pole piece and the electrostatic deflector, and the electrostatic lens field is configured by adjusting offset voltages applied to plates of the electrostatic deflector. Other embodiments, aspects and features are also disclosed.
Owner:KLA TENCOR TECH CORP

Device and method for regulating intensity of beam extracted from a particle accelerator

The invention concerns a device (10) for regulating the intensity of a beam extracted from a particle accelerator, such as a cyclotron, used for example for protontherapy, said particles being generated from an ion source. The invention is characterized in that it comprises at least: a comparator (90) determining a difference ε between a digital signal IR representing the intensity of the beam measured at the output of the accelerator and a setpoint value IC of the beam intensity: a Smith predictor (80) which determines on the basis of the difference ε, a correct value of the intensity of the beam IP; an inverted correspondence table (40) supplying, on the basis of the corrected value of the intensity of the beam IP, a setpoint value IA for supply arc current from the ion source (20).
Owner:ION BEAM APPL

Rotating gantry of particle beam therapy system

A rotating gantry includes a link frame for supporting a plurality of rollers which rotatably support the rotating gantry, a brake for releasing a braking force applied to at least one of the rollers upon supply of air and applying the braking force to the one roller upon discharge of air, and a solenoid valve for sealing the supplied air in the brake when closed, and discharging the air from the brake when opened. The solenoid valve is supported by a solenoid valve support member mounted to the link frame such that the solenoid valve is positioned just near the brake. The rotating gantry can be more quickly braked and stopped while maintaining high irradiation accuracy.
Owner:HITACHI LTD +1

Charged particle therapy system, range modulation wheel device, and method of installing range modulation wheel device

The invention provides a charged particle therapy system capable of increasing the number of patients treated. An irradiation filed forming apparatus for irradiating a charged particle beam extracted from a charged particle beam generator to an irradiation target includes an RMW device. The RMW device comprises a housing and an RMW disposed within the housing. A rotary shaft of the RMW is rotatably mounted to the housing. The RMW device is detachably installed in an RMW holding member provided in a casing of the irradiation filed forming apparatus. The housing can be placed in contact with the RMW holding member, and hence positioning of the rotary shaft of the RMW to a predetermined position can be performed in a short time. This contributes to cutting a time required for treatment per patient and increasing the number of patients treated.
Owner:HITACHI LTD

System for the Delivery of Proton Therapy

A process for an intensity-modulated proton therapy of a predetermined volume within an object includes discretising the predetermined volume into a number of iso-energy layers each corresponding to a determined energy of the proton beam. A final target dose distribution is determined for each iso-energy layer. The final target dose distribution or at least a predetermined part of this final target dose distribution is applied by parallel beam scanning by controlling the respective beam sweepers, thereby scanning one iso-energy layer after the other using an intensity-modulated proton beam while scanning a predetermined iso-energy layer.
Owner:PAUL SCHERRER INSTITUT

Charged particle beam irradiation system

A charged particle beam irradiation system comprises a high-speed steerer (beam dump device) 100 disposed in a course of a beam transport line 4 through which an ion beam is extracted from a charged-particle beam generator 1. The beam dump device 100 is provided with dose monitoring devices 105, 106 for measuring a dose of an ion beam applied to a beam dump 104 so that the intensity of the ion beam can be measured without transporting the ion beam to irradiation nozzles 15A through 15D. Thus, the system is capable of adjusting the intensity of an ion beam extracted from a synchrotron without operating each component of a beam transport line, and an irradiation nozzle.
Owner:HITACHI LTD

Particle beam processing system

A method for slowing and controlling a beam of charged particles includes the steps of superimposing at least one magnetic field on a mass and passing the beam through the mass and at least one magnetic field such that the beam and the mass slows but does not stop the particles. An apparatus for slowing and controlling a beam of charged particles includes a bending magnetic field superimposed on a focusing magnetic field within a mass.
Owner:HBAR TECH LC

Particle beam irradiation apparatus and particle beam irradiation method

To ensure irradiation accuracy and safety, even when an irradiation device employing a different irradiation method is used, disclosed is herein a charged particle beam irradiation apparatus that irradiates an irradiation target with charged particle beams includes:a charged particle beam generator for generating the charged particle beams; a passive scattering irradiation device and a scanning irradiation device, both for irradiating the irradiation target with the charged particle beams; a beam transport system for transporting the charged particles beam extracted from the charged particle beam generator, to selected one of the two irradiation devices; and a central controller that modifies operating parameters on the charged particle beam generator, according to the irradiation method adopted for the selected irradiation device.
Owner:HITACHI LTD

Medical particle irradiation apparatus

Disclosed is a medical particle irradiation apparatus comprising a rotating gantry 1 including an irradiation unit 4 emitting particle beams; an annular frame 16 located within and supported by the rotating gantry 1 such that it can rotate relative to the rotating gantry 1; an annular frame 15 fixedly located opposite the annular frame 16; an anti-corotation mechanism 34 being in contact with both the annular frames 16 and 15 to prevent the annular frame 16 from rotating together with the rotating gantry 1 during rotation of the rotating gantry 1; and a flexible moving floor 17 interposed between the annular frames 15 and 16, the flexible moving floor 17 being engaged with the annular frames 15 and 16 in such a manner as to move freely such that its bottom is substantially level and that it moves as the rotating gantry rotates.
Owner:HITACHI LTD +1

Particle-optical systems and arrangements and particle-optical components for such systems and arrangements

An electron-optical arrangement provides a primary beam path for a beam of primary electrons and a secondary beam path for secondary electrons. The electron-optical arrangement includes a magnet arrangement having first, second and third magnetic field regions. The first magnetic field region is traversed by the primary beam path and the secondary beam path. The second magnetic field region is arranged in the primary beam path upstream of the first magnetic field region and is not traversed by the secondary beam path. The first and second magnetic field regions deflect the primary beam path in substantially opposite directions. The third magnetic field region is arranged in the secondary beam path downstream of the first magnetic field region and is not traversed by the first beam path. The first and third magnetic field regions deflect the secondary beam path in a substantially same direction.
Owner:CARL ZEISS MICROSCOPY GMBH +1

Charged particle beam irradiation equipment and control method thereof

A power supply for applying a voltage to a scanning electromagnet for deflecting a charged particle beam has a first power supply unit having no filter and a second power supply unit having a filter. When an irradiation position of the charged particle beam in an irradiation object is moved, the first power supply unit, namely a power supply unit having no filter, is used to apply the voltage to the scanning electromagnet, so that an exciting current flowing in the scanning electromagnet can be changed in a short time. Further, when the irradiation position of the charged particle beam is maintained, the second power supply is used to apply a voltage whose pulsating component was removed to the scanning electromagnet, so that the exciting current flowing in the scanning electromagnet can be controlled precisely. Consequently, the charged particle beam can be applied uniformly to the irradiation object and an irradiation time of the charged particle beam to the irradiation object can be curtailed.
Owner:HITACHI LTD

RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises a radio-frequency accelerator method and apparatus used in conjunction with multi-axis charged particle radiation therapy of cancerous tumors. An RF synthesizer provides a low voltage RF signal, that is synchronized to the period of circulation of protons in the proton beam path, to a set of integrated microcircuits, loops, and coils where the coils circumferentially enclose the proton beam path in a synchrotron. The integrated components combine to provide an accelerating voltage to the protons in the proton beam path in a size compressed and price reduced format. The integrated RF-amplifier microcircuit / accelerating coil system is operable from about 1 MHz, for a low energy proton beam, to about 15 MHz, for a high energy proton beam.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Apparatus for irradiating a target volume

An irradiation apparatus for irradiating by scanning a target volume according to a predetermined dose profile with a scanning beam of charged particles forming an irradiation spot on said target volume, said apparatus comprising:a beam generating device,a reference generator for computing, from said predetermined dose profile, through a dynamic inverse control strategy, the time evolution of commanded variables, these variables being the beam current I(t), the spot position settings x(t),y(t) and the scanning speed settings vx(t), vy(t),a monitor device having means for detecting at each time (t), the actual spot position as a measured position defined by the values xm(t),ym(t) on the target volume,characterised in that said irradiation apparatus further comprises means for determining the differences ex(t), ey(t) between the measured values xm(t), ym(t) and the spot position settings x(t) and y(t), and means for applying a correction to the scanning speed settings vx(t) and vy(t) depending on said differences ex(t), ey(t). The present invention is also related to a monitor for determining beam position in real-time.
Owner:ION BEAM APPL

Method And Software For Irradiating A Target Volume With A Particle Beam And Device Implementing Same

The present invention is related to a method for treating or irradiating a target volume with a particle beam produced by an accelerator, comprising the steps of: deflecting said particle beam with the help of scanning means in two orthogonal (X, Y) directions, thereby constituting an irradiation plane perpendicular to the direction (Z) of the beam, defining in the irradiation plane a scanning field which circumscribes the area of intersection of target volume and irradiation plane and scanning said scanning field by drawing scan lines which form a scan pattern comprising interleaved frames of triangle waves. The scan pattern is preferably continuous and represents contiguous rhombi figures. The invention is equally related to a device and a software program or sequencer implementing the method.
Owner:ION BEAM APPL

Medical particle irradiation apparatus

Disclosed is a medical particle irradiation apparatus comprising a rotating gantry 1 including an irradiation unit 4 emitting particle beams; an annular frame 16 located within and supported by the rotating gantry 1 such that it can rotate relative to the rotating gantry 1; an annular frame 15 fixedly located opposite the annular frame 16; an anti-corotation mechanism 34 being in contact with both the annular frames 16 and 15 to prevent the annular frame 16 from rotating together with the rotating gantry 1 during rotation of the rotating gantry 1; and a flexible moving floor 17 interposed between the annular frames 15 and 16, the flexible moving floor 17 being engaged with the annular frames 15 and 16 in such a manner as to move freely such that its bottom is substantially level and that it moves as the rotating gantry rotates.
Owner:HITACHI LTD +1

Charged particle beam irradiation equipment having scanning electromagnet power supplies

A power supply for applying a voltage to a scanning electromagnet for deflecting a charged particle beam has a first power supply unit having no filter and a second power supply unit having a filter. When an irradiation position of the charged particle beam in an irradiation object is moved, the first power supply unit, namely a power supply unit having no filter, is used to apply the voltage to the scanning electromagnet, so that an exciting current flowing in the scanning electromagnet can be changed in a short time. Further, when the irradiation position of the charged particle beam is maintained, the second power supply is used to apply a voltage whose pulsating component was removed to the scanning electromagnet, so that the exciting current flowing in the scanning electromagnet can be controlled precisely. Consequently, the charged particle beam can be applied uniformly to the irradiation object and an irradiation time of the charged particle beam to the irradiation object can be curtailed.
Owner:HITACHI LTD

Integrated beam modifying assembly for use with a proton beam therapy machine

An integrated beam modifying assembly for use with a proton beam therapy machine. Typically the snouts of a proton beam therapy machine are adapted to receive separate apertures and range compensators. Applicants provide an integrated assembly for slotting into the snout of a proton beam therapy machine, which integrated assembly incorporates both aperture material and range compensator material for profiling, shaping, and modulating the beam.
Owner:COMER SEAN +1

Charged particle beam extraction system and method

A charged particle beam extraction system and method capable of ensuring higher safety when extraction of an ion beam is on / off-controlled during irradiation of the ion beam for treatment. The charged particle beam extraction system comprises a charged particle beam generator including a synchrotron, a range modulation wheel (RMW) for forming a Bragg peak width of a charged particle beam extracted from the charged particle beam generator, a gate signal generator for controlling start and stop of extraction of the charged particle beam from the charged particle beam generator in accordance with a rotational angle of the RMW, and an irradiation control / determination section for determining whether the start and stop of extraction of the charged particle beam is controlled at desired timing by the gate signal generator.
Owner:HITACHI LTD

High energy polyenergetic ion selection systems, ion beam therapy systems, and ion beam treatment centers

Devices and methods are provided for generating laser-accelerated high energy polyenergetic positive ion beams that are spatially separated and modulated based on energy level. The spatially separated and modulated high energy polyenergetic positive ion beams are used for radiation therapy. In addition, methods are provided for treating patients in radiation treatment centers using therapeutically suitable high energy polyenergetic positive ion beams that are provided by spatially separating and modulating positive ion beams. The production of radioisotopes using spatially separated and modulated laser-accelerated high energy polyenergetic positive ion beams is also provided.
Owner:INST FOR CANCER RES

Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises an ion beam focusing method and apparatus used as part of an ion beam injection system, which is used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. The ion beam focusing system includes two or more electrodes where one electrode of each electrode pair partially obstructs the ion beam path with conductive paths, such as a conductive mesh. In a given electrode pair, electric field lines, running between the conductive mesh of a first electrode and a second electrode, provide inward forces focusing the negative ion beam. Multiple such electrode pairs provide multiple negative ion beam focusing regions.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Multi beam charged particle device

The present invention provides an improved column for a charged particle beam device. The column comprises an aperture plate having multiple apertures to produce multiple beams of charged particles and a deflector to influence the beams of charged particles so that each beam appears to come from a different source. Furthermore, an objective lens is used in order to focus the charged-particle beams onto the specimen. Due to the deflector, multiple images of the source are created on the surface of the specimen whereby all the images can be used for parallel data acquisition. Accordingly, the speed of data acquisition is increased. With regard to the focusing properties of the objective lens, the beams of charged particles can basically be treated as independent particle beams which do not negatively affect each other. Accordingly, each beam basically provides the same resolution as the beam of a conventional charged particle beam device.
Owner:ICT INTEGRATED CIRCUIT TESTING GESELLSCHAFT FUER HALBLEITERPRUEFTECHNIK GMBH

Energy beam exposure method and exposure apparatus

An exposure method using an energy beam exposure apparatus capable of controlling magnitude relation between blurs of energy beam in first and second directions for exposing a pattern on a sample in the apparatus in a state in which the blur of energy beam in one direction of the first and second directions is set smaller than the blur of energy beam in the other direction comprises adjusting the magnitude relation of the blurs of energy beam in the first and second directions, adjusting the direction of the sample in the apparatus on the basis of the pattern and the magnitude relation of the blurs of energy beam in the first and second directions, and projecting the pattern onto the sample by exposing the sample to the energy beam and using shape correction of the pattern needed to compensate blurs of energy beam in the first and second directions.
Owner:KK TOSHIBA

Integrated sub-nanometer-scale electron beam systems

A solid state sub-nanometer-scale electron beam emitter comprising a multi-layered structure having a nano-tip electron emitter and tunnel emission junction formed on substrate, an initial electron beam extraction electrode, a “nano-sandwich Einzel” electrode, and a topmost protective layer.
Owner:BIOMED SOLUTIONS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products