Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

238 results about "Ion beam processing" patented technology

Objective lens for an electron microscopy system and electron microscopy system

An objective lens with magnetic and electrostatic focusing for an electron microscopy system is provided whose at least partially conical outer shape allows orienting an object to be imaged at a large angle range in respect of an electron beam, said objective lens exhibiting, at the same time, good optical parameters. This is enabled by a specific geometry of the lens elements. Furthermore, an examination for the simultaneous imaging and processing of an object is proposed which comprises, besides an electron microscopy system with the above-mentioned objective lens, also an ion beam processing system and an object support.
Owner:CARL ZEISS NTS GMBH

Ion source, ion beam processing/observation apparatus, charged particle beam apparatus, and method for observing cross section of sample

An ion beam machining and observation method relevant to a technique of cross sectional observation of an electronic component, through which a sample is machined by using an ion beam and a charged particle beam processor capable of reducing the time it takes to fill up a processed hole with a high degree of flatness at the filled area. The observation device is capable of switching the kind of gas ion beam used for machining a sample with the kind of a gas ion beam used for observing the sample. To implement the switch between the kind of a gas ion beam used for sample machining and the kind of a gas ion beam used for sample observation, at least two gas introduction systems are used, each system having a gas cylinder a gas tube, a gas volume control valve, and a stop valve.
Owner:HITACHI HIGH-TECH CORP

Field emission devices using ion bombarded carbon nanotubes

The present invention relates to a field emission device comprising an anode and a cathode, wherein said cathode includes carbon nanotubes which have been treated with an ion beam. The ion beam may be any ions, including gallium, hydrogen, helium, argon, carbon, oxygen, and xenon ions. The present invention also relates to a field emission cathode comprising carbon nanotubes, wherein the nanotubes have been treated with an ion beam. A method for treating the carbon nanotubes and for creating a field emission cathode is also disclosed. A field emission display device containing carbon nanotube which have been treated with an ion beam is further disclosed.
Owner:HYPERION CATALYSIS INT

Method of making coated article including ion beam treatment of metal oxide protective film

There is provided a method of making a heat treated (HT) coated article to be used in shower door applications, window applications, or any other suitable applications where transparent coated articles are desired. For example, certain embodiments of this invention relate to a method of making a coated article including a step of heat treating a glass substrate coated with at least a layer of or including diamond-like carbon (DLC) and an overlying protective film (e.g., of or including zinc oxide) thereon. In certain example embodiments, the protective film may be ion beam treated with at least carbon ions. It has been found that the ion beam treatment improves the shelf-life of the product prior to HT. Following and / or during heat treatment (e.g., thermal tempering, or the like), the protective film may be removed.
Owner:GUARDIAN GLASS LLC

Copper interconnect wiring and method of forming thereof

Capping layer or layers on a surface of a copper interconnect wiring layer for use in interconnect structures for integrated circuits and methods of forming improved integration interconnection structures for integrated circuits by the application of gas-cluster ion-beam processing. Reduced copper diffusion and improved electromigration lifetime result and the use of selective metal capping techniques and their attendant yield problems are avoided.
Owner:TEL EPION

Coated article with ion treated overcoat layer and corresponding method

A coated article is provided that may be used as a vehicle windshield, insulating glass (IG) window unit, or the like. Ion beam treatment is performed on a layer(s) of the coating. For example, an overcoat layer (e.g., of silicon nitride) of a low-E coating may be ion beam treated in a manner so as to cause the ion beam treated layer to include (a) nitrogen-doped Si3N4, and / or (b) nitrogen graded silicon nitride. It has been found that this permits durability of the coated article to be improved.
Owner:GUARDIAN GLASS LLC

Field emission devices using ion bombarded carbon nanotubes

The present invention relates to a field emission device comprising an anode and a cathode, wherein said cathode includes carbon nanotubes which have been treated with an ion beam. The ion beam may be any ions, including gallium, hydrogen, helium, argon, carbon, oxygen, and xenon ions. The present invention also relates to a field emission cathode comprising carbon nanotubes, wherein the nanotubes have been treated with an ion beam. A method for treating the carbon nanotubes and for creating a field emission cathode is also disclosed. A field emission display device containing carbon nanotube which have been treated with an ion beam is further disclosed.
Owner:HYPERION CATALYSIS INT

Replacement gate field effect transistor with germanium or SiGe channel and manufacturing method for same using gas-cluster ion irradiation

A self-aligned MISFET transistor (500H) on a silicon substrate (502), but having a graded SiGe channel or a Ge channel. The channel (526) is formed using gas-cluster ion beam (524) irradiation and provides higher channel mobility than conventional silicon channel MISFETs. A manufacturing method for such a transistor is based on a replacement gate process flow augmented with a gas-cluster ion beam processing step or steps to form the SiGe or Ge channel. The channel may also be doped by gas-cluster ion beam processing either as an auxiliary step or simultaneously with formation of the increased mobility channel.
Owner:TEL EPION

Apparatus for specimen fabrication and method for specimen fabrication

A micro-sample prepared by processing with an ion beam is extracted by a probe and, in this state, a voltage is applied across the probe and a micro-sample holder by a circuit for sending electric current to probe. Thereafter, a probe driver is moved by a probe position controller to cause a portion of the probe distanced from the tip thereof by about 5 μm toward the root side thereof to approach an end surface of an ear portion of the micro-sample holder, so that the probe and the micro-sample holder are fixed together at a bonding point by current welding. Then, by cutting a root-side portion, relative to the bonding point, of the probe using an ion beam, fixation of the micro-sample to the micro-sample holder via the tip of the probe is completed.
Owner:HITACHI HIGH-TECH CORP

Method of forming robust metal, metal oxide, and metal alloy layers on ion-conductive polymer membranes

An ion beam-assisted deposition process for preparing a membrane-electrode structure is described wherein a layer of liquid ionomer is applied to the surface of a carbon cloth gas diffusion electrode structure. The coated structure is heated to form an ionomer film on the cloth electrode and the resulting structure is treated with a metal or metal oxide ion-beam having an energy between 500-2000 eV. The process forms a carbon cloth supported metal or a carbon metal oxide ionomer film membrane-electrode structure.
Owner:BASF FUEL CELL

Method for depositing films using gas cluster ion beam processing

A method for depositing material on a substrate is described. The method comprises maintaining a reduced-pressure environment around a substrate holder for holding a substrate having a surface, and holding the substrate securely within the reduced-pressure environment. Additionally, the method comprises providing to the reduced-pressure environment a gas cluster ion beam (GCIB) from a pressurized gas mixture, accelerating the GCIB, and irradiating the accelerated GCIB onto at least a portion of the surface of the substrate to form a thin film. In one embodiment, the pressurized gas mixture comprises a silicon-containing specie and at least one of a nitrogen-containing specie or a carbon-containing specie for forming a thin film containing silicon and at least one of nitrogen or carbon. In another embodiment, the gas mixture comprises a metal-containing specie for forming a thin metal-containing film. In yet another embodiment, the pressurized gas mixture comprises a fluorocarbon-containing specie for forming a thin fluorocarbon-containing film.
Owner:TEL EPION

Coated article with ion treated underlayer and corresponding method

A coated article is provided that may be used as a vehicle windshield, insulating glass (IG) window unit, or the like. Ion beam treatment is performed on a layer(s) of the coating. For example, a silicon nitride layer of a low-E coating may be ion beam treated. It has been found that ion beam treatment, for example, of a silicon nitride underlayer is advantageous in that sodium migration from the glass substrate toward the IR reflecting layer(s) can be reduced during heat treatment.
Owner:GUARDIAN GLASS LLC

Multiple nozzle gas cluster ion beam processing system and method of operating

A gas cluster ion beam (GCIB) processing system using multiple nozzles for forming and emitting at least one GCIB and methods of operating thereof are described. The GCIB processing system may be configured to treat a substrate, including, but not limited to, doping, growing, depositing, etching, smoothing, amorphizing, or modifying a layer thereupon. Furthermore, the GCIB processing system may be operated to produce a first GCIB and a second GCIB, and to irradiate a substrate simultaneously and / or sequentially with the first GCIB and second GCIB.
Owner:TEL EPION

GCIB Cluster Tool Apparatus and Method of Operation

A wafer processing cluster tool and method of operation provides one or more gas cluster ion beam processing chambers in possible combination with a deposition chamber and / or a cleaning chamber for performing sequential processing steps including, GCIB processing in a reduced pressure atmosphere.
Owner:TEL EPION

Coated article with oxidation graded layer proximate IR reflecting layer(s) and corresponding method

A coated article is provided that may be heat treated in certain example embodiments. A graded layer (e.g., contact layer or other suitable layer) is formed by initially sputter-depositing a layer, and thereafter ion beam treating the sputter-deposited layer with at least reactive gas ions in order to form a graded layer. In certain example embodiments, the result is a coated article that has improved visible transmission and / or durability, without sacrificing optional heat treatability.
Owner:GUARDIAN EURO S A R L +1

Method for depositing films using gas cluster ion beam processing

A method for depositing material on a substrate is described. The method comprises maintaining a reduced-pressure environment around a substrate holder for holding a substrate having a surface, and holding the substrate securely within the reduced-pressure environment. Additionally, the method comprises providing to the reduced-pressure environment a gas cluster ion beam (GCIB) from a pressurized gas mixture, accelerating the GCIB, and irradiating the accelerated GCIB onto at least a portion of the surface of the substrate to form a thin film. In one embodiment, the pressurized gas mixture comprises a silicon-containing specie and at least one of a nitrogen-containing specie or a carbon-containing specie for forming a thin film containing silicon and at least one of nitrogen or carbon. In another embodiment, the gas mixture comprises a metal-containing specie for forming a thin metal-containing film. In yet another embodiment, the pressurized gas mixture comprises a fluorocarbon-containing specie for forming a thin fluorocarbon-containing film.
Owner:TEL EPION

Dual damascene integration structure and method for forming improved dual damascene integration structure

Methods for forming a dual damascene dielectric structure in a porous ultra-low-k (ULK) dielectric material by using gas-cluster ion-beam processing are disclosed. These methods minimize hard-mask layers during dual damascene ULK processing and eliminate hard-masks in the final ULK dual damascene structure. Methods for gas-cluster ion-beam etching, densification, pore sealing and ashing are described that allow simultaneous removal of material and densification of the ULK interfaces. A novel ULK dual damascene structure is disclosed with densified interfaces and no hard-masks.
Owner:TEL EPION

Field effect transistor with etched-back gate dielectric

A method for making an ultrathin high-k gate dielectric for use in a field effect transistor is provided. The method involves depositing a high-k gate dielectric material on a substrate and forming an ultrathin high-k dielectric by performing a thinning process on the high-k gate dielectric material. The process used to thin the high-k dielectric material can include at least one of any number of processes including wet etching, dry etching (including gas cluster ion beam (GCIB) processing), and hybrid damage / wet etching. In addition to the above, the present invention relates to an ultrathin high-k gate dielectric made for use in a field-effect transistor made by the above method.
Owner:GLOBALFOUNDRIES US INC

Ion beam treatment for the structural integrity of air-gap iii-nitride devices produced by the photoelectrochemical (PEC) etching

A method for ensuring the structural integrity of III-nitride opto-electronic or opto-mechanical air-gap nano-structured devices, comprising (a) performing ion beam implantation in a region of the III-nitride opto-electronic and opto-mechanical air-gap nano-structured device, wherein the milling significantly locally modifies a material property in the region to provide the structural integrity; and (b) performing a band-gap selective photo-electro-chemical (PEC) etch on the III-nitride opto-electronic and opto-mechanical air-gap nano-structured device. The method can be used to fabricate distributed Bragg reflectors or photonic crystals, for example. The method also comprises the suitable design of distributed Bragg reflector (DBR) structures for the PEC etching and the ion-beam treatment, the suitable design of photonic crystal distributed Bragg reflector (PCDBR) structures for PEC etching and the ion-beam treatment, the suitable placement of protection layers to prevent the ion-beam damage to optical activity and PEC etch selectivity, and a suitable annealing treatment for curing the material quality after the ion-beam treatment.
Owner:RGT UNIV OF CALIFORNIA

Conducting fiber and preparation method thereof

The invention provides conductive fibers and a preparation method thereof. The preparation method comprises the following steps that: firstly, the fibers are subjected to warping; secondly, the warped row of fibers is subjected to plasma processing; thirdly, the processed fibers are plated by vacuum physically to generate a physically plated metal coating, the order of magnitude of the specific resistance is between 10<7> and 10<0>Omega.cm; the metal coating is mainly used for being anti-static and sterilizing clothes; a metal layer is plated outside the physically plated metal coating, the order of magnitude of the specific resistance is less than or equal to 10<0>Omega.cm; the metal layer is mainly used for shielding electromagnetic wave and absorbing materials; and the plasma processing comprises the ion beam processing or the negative bias addition. The preparation method has simple technique, low cost, and strong feasibility of the industrial production on a large scale. The manufactured conductive fibers have the characteristics that the product is combined firmly, the dyeing property and the conductivity are good, the chemical resistance and the wash resistance are good and the tactility is soft.
Owner:TIANNUO PHOTOELECTRIC MATERIAL

Dual damascene integration structure and method for forming improved dual damascene integration structure

Methods of densifying a porous ultra-low-k (ULK) dielectric material by using gas-cluster ion-beam processing are disclosed. Methods for gas-cluster ion-beam etching, densification, pore sealing and ashing are described that allow simultaneous removal of material and densification of the ULK interfaces. A novel ULK dual damascene structure is disclosed with densified interfaces and no hard-masks.
Owner:TEL EPION

Objective lens for an electron microscopy system and electron microscopy system

An objective lens with magnetic and electrostatic focusing for an electron microscopy system is provided whose at least partially conical outer shape allows orienting an object to be imaged at a large angle range in respect of an electron beam, said objective lens exhibiting, at the same time, good optical parameters. This is enabled by a specific geometry of the lens elements. Furthermore, an examination for the simultaneous imaging and processing of an object is proposed which comprises, besides an electron microscopy system with the above-mentioned objective lens, also an ion beam processing system and an object support.
Owner:CARL ZEISS SMT GMBH

Copper Interconnect Wiring and Method and Apparatus for Forming Thereof

Capping layer or layers on a surface of a copper interconnect wiring layer for use in interconnect structures for integrated circuits and methods and apparatus for forming improved integration interconnection structures for integrated circuits by the application of gas-cluster ion-beam processing. Reduced copper diffusion and improved electromigration lifetime result and the use of selective metal capping techniques and their attendant yield problems are avoided. Various cluster tool configurations including gas-cluster ion-beam processing modules for copper capping, cleaning, etching, and film formation steps are disclosed.
Owner:TEL EPION

Ion beam apparatus, ion beam processing method and sample holder member

An ion beam processing device has a sample holder for fixing a sample on which a section has been formed by irradiation of a specified focused ion beam from a surface side, and gas ion beam irradiation device for irradiating a gas ion beam to a region of the sample fixing using the holder member that contains the section to remove a damage layer on the section. The gas ion beam from the gas ion beam irradiation device irradiates the section from a rear surface side of the sample at a specified incident angle.
Owner:HITACHI HIGH TECH SCI CORP

Method of ion beam treatment of DLC in order to reduce contact angle

A method is provided for ion treating diamond-like carbon (DLC) in order to reduce contact angle thereof. For example, a substrate is coated with a layer(s) or coating(s) that includes, for example, amorphous carbon in a form of DLC. The DLC is then ion beam treated in a manner so as to cause the contact angle θ thereof to decrease. In certain example embodiments, at least oxygen gas is used in an ion beam source(s) that generates the ion beam(s) used for the ion beam treatment.
Owner:GUARDIAN GLASS LLC

GCIB liner and hardmask removal process

A method comprises depositing a dielectric film layer, a hard mask layer, and a patterned photo resist layer on a substrate. The method further includes selectively etching the dielectric film layer to form sub-lithographic features by reactive ion etch processing and depositing a barrier metal layer and a copper layer. The method further includes etching the barrier metal layer and hard mask layer by gas cluster ion beam (GCIB) processing.
Owner:TWITTER INC

Coated Article having low-E coating with ion beam treated IR reflecting layer and corresponding method

ActiveUS20060008655A1Electrical resistance of the IR reflecting layer to decreaseImprove featuresVacuum evaporation coatingSputtering coatingIr reflectionIon beam processing
A coated article is provided that may be used as a vehicle windshield, insulating glass (IG) window unit, or the like. An ion beam is used to treat an infrared (IR) reflecting layer(s) of such a coated article. Advantageously, this has been found to improve sheet resistance (Rs) properties, emittance, solar control properties, and / or durability of the coated article.
Owner:GUARDIAN EURO S A R L +1

Ion beam processing apparatus

The present invention provides an ion beam processing technology for improving the precision in processing a section of a sample using an ion beam without making a processing time longer than a conventionally required processing time, and for shortening the time required for separating a micro test piece without breaking the sample or the time required for making preparations for the separation. An ion beam processing apparatus is structured so that an axis along which an ion beam is drawn out of an ion source and an ion beam irradiation axis along which the ion beam is irradiated to a sample mounted on a first sample stage will meet at an angle. Furthermore, the ion beam processing apparatus has a tilting ability to vary an angle of irradiation, at which the ion beam is irradiated to the sample, by rotating a second sample stage, on which a test piece extracted from the sample by performing ion beam processing is mounted, about the tilting axis of the second sample stage. The ion beam processing apparatus is structured so that a segment drawn by projecting the axis, along which the ion beam is drawn out of the ion source, on a plane perpendicular to the ion beam irradiation axis can be at least substantially parallel to a segment drawn by projecting the tilting axis of the second sample stage on the plane perpendicular to the ion beam irradiation axis.
Owner:HITACHI HIGH-TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products