Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2146results about How to "Precise processing" patented technology

Method and apparatus of a self-configured, model-based adaptive, predictive controller for multi-zone regulation systems

A control system simultaneously controls a multi-zone process with a self-adaptive model predictive controller (MPC), such as temperature control within a plastic injection molding system. The controller is initialized with basic system information. A pre-identification procedure determines a suggested system sampling rate, delays or “dead times” for each zone and initial system model matrix coefficients necessary for operation of the control predictions. The recursive least squares based system model update, control variable predictions and calculations of the control horizon values are preferably executed in real time by using matrix calculation basic functions implemented and optimized for being used in a S7 environment by a Siemens PLC. The number of predictions and the horizon of the control steps required to achieve the setpoint are significantly high to achieve smooth and robust control. Several matrix calculations, including an inverse matrix procedure performed at each sample pulse and for each individual zone determine the MPC gain matrices needed to bring the system with minimum control effort and variations to the final setpoint. Corrective signals, based on the predictive model and the minimization criteria explained above, are issued to adjust system heating/cooling outputs at the next sample time occurrence, so as to bring the system to the desired set point. The process is repeated continuously at each sample pulse.
Owner:SIEMENS IND INC

Image recording/reproducing apparatus, image pick-up apparatus, and color aberration correcting method

An image recording and reproducing apparatus, an image pickup apparatus, and a chromatic aberration correcting method capable of performing excellent correction processing of an aperture amount of an iris and a lens image height of an object in an image pickup lens are provided.
An output signal from a camera signal processing circuit 4 is selected by a switch 5 to be supplied to a chromatic aberration correction unit 6. An aperture amount of an iris 31 provided in an image pickup lens 1 and coordinates of a pixel, to which correction processing is performed, from the chromatic aberration correction unit 6 are supplied to a conversion ratio calculation unit 10. A driving state such as a zoom focal length and focal position of the image pickup lens 1 and a camera shake correction vector are supplied to the conversion ratio calculation unit 10. Then, a conversion ratio for each color is obtained to be supplied to the chromatic aberration correction unit 6. Further, a signal corrected in the chromatic aberration correction unit 6 is compressed in a data compression circuit 15 to be supplied to a recording medium in a recording and reproducing apparatus 17. A signal reproduced from the recording and reproducing apparatus 17 is decompressed in a data decompression circuit 18 to be supplied to the switch 5. Accordingly, picture-quality degradation occurring in a miniaturized image pickup lens can be corrected by processing a picked-up image signal, and excellent correction processing can be performed on an aperture amount of an iris and a lens image height of an object in the image pickup lens.
Owner:SONY CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products