Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

33 results about "Arterial tree" patented technology

In anatomy, arterial tree is used to refer to all arteries and/or the branching pattern of the arteries. This article regards the human arterial tree.

Methods and apparatus for determining cardiac output

The present invention provides methods and apparatus for determining a dynamical property of the systemic or pulmonary arterial tree using long time scale information, i.e., information obtained from measurements over time scales greater than a single cardiac cycle. In one aspect, the invention provides a method and apparatus for monitoring cardiac output (CO) from a single blood pressure signal measurement obtained at any site in the systemic or pulmonary arterial tree or from any related measurement including, for example, fingertip photoplethysmography.According to the method the time constant of the arterial tree, defined to be the product of the total peripheral resistance (TPR) and the nearly constant arterial compliance, is determined by analyzing the long time scale variations (greater than a single cardiac cycle) in any of these blood pressure signals. Then, according to Ohm's law, a value proportional to CO may be determined from the ratio of the blood pressure signal to the estimated time constant. The proportional CO values derived from this method may be calibrated to absolute CO, if desired, with a single, absolute measure of CO (e.g., thermodilution). The present invention may be applied to invasive radial arterial blood pressure or pulmonary arterial blood pressure signals which are routinely measured in intensive care units and surgical suites or to noninvasively measured peripheral arterial blood pressure signals or related noninvasively measured signals in order to facilitate the clinical monitoring of CO as well as TPR.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV +1

Methods and apparatus for determining cardiac output

The present invention provides methods and apparatus for determining a dynamical property of the systemic or pulmonary arterial tree using long time scale information, i.e., information obtained from measurements over time scales greater than a single cardiac cycle. In one aspect, the invention provides a method and apparatus for monitoring cardiac output (CO) from a single blood pressure signal measurement obtained at any site in the systemic or pulmonary arterial tree or from any related measurement including, for example, fingertip photoplethysmography.
According to the method the time constant of the arterial tree, defined to be the product of the total peripheral resistance (TPR) and the nearly constant arterial compliance, is determined by analyzing the long time scale variations (greater than a single cardiac cycle) in any of these blood pressure signals. Then, according to Ohm's law, a value proportional to CO may be determined from the ratio of the blood pressure signal to the estimated time constant. The proportional CO values derived from this method may be calibrated to absolute CO, if desired, with a single, absolute measure of CO (e.g., thermodilution). The present invention may be applied to invasive radial arterial blood pressure or pulmonary arterial blood pressure signals which are routinely measured in intensive care units and surgical suites or to noninvasively measured peripheral arterial blood pressure signals or related noninvasively measured signals in order to facilitate the clinical monitoring of CO as well as TPR.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV +1

Method and device for detecting body haemodynamics response in in-vitro counterpulsation treatment

ActiveCN110384485ALow costEvaluation of blood vesselsCatheterBlood flowHaemodynamic response
The invention discloses a method and device for detecting body haemodynamics response in in-vitro counterpulsation treatment. The detection method comprises the steps that physiological information ofa sampler is acquired, and blood vessel and blood flow state data before and in in-vitro counterpulsation treatment are acquired respectively; an arterial tree is segmented based on an arterial treestructure model, blood segment length and radius data of a healthy volunteer are acquired, a baseline reference value is set, and an arterial tree geometric solution model is constructed; and boundaryconditions and correction and calibration conditions are calculated and set, flow and pressure pulse wave distribution of each position of the arterial tree is calculated on the basis of the pulse wave transmission theory and the model, and the blood perfusion and blood pressure levels of target blood vessel segments and visceral organs before and in the in-vitro counterpulsation treatment are calculated. The method and device can be used for noninvasive, real-time and effective analysis of the immediate haemodynamics effect of the in-vitro counterpulsation intervention treatment, and break the technical bottleneck of lack of an effective immediate haemodynamics effect evaluation method in the current in-vitro counterpulsation treatment.
Owner:THE EIGHTH AFFILIATED HOSPITAL SUN YAT SEN UNIV

Method and device for obtaining average blood flow and flow rate at outlet of coronary artery, and system

The application provides a method and device for obtaining average blood flow and flow rate at an outlet of a coronary artery, and a system. The method for obtaining the average blood flow at the outlet of the coronary artery in a cardiac cycle comprises the following steps of in one cardiac cycle, according to the volume of cardiac muscles, obtaining the total blood flow of an inlet of the coronary artery; extracting the blood vessel diameter of each of all the outlets of a corona arterial tree; and according to the total blood flow at the inlet of the coronary artery and the blood vessel diameter of the outlet of the coronary artery, obtaining the average blood flow at the outlet of the coronary artery in the cardiac cycle. The method disclosed by the application is a new non-invasive detection means, measuring the blood flow does not need to rely on a coronary artery ultrasonic technique, and according to the total blood flow at the inlet of the coronary artery and the blood vesseldiameter at the outlet, the average blood flow at the outlet of the coronary artery in one cardiac cycle can be obtained, so that the operation is easy, fine structure images can be distinguished, andthe measuring is more accurate.
Owner:SUZHOU RAINMED MEDICAL TECH CO LTD

Method and device for detecting body hemodynamic response in external counterpulsation therapy

The invention discloses a method and a device for detecting the body's hemodynamic response in external counterpulsation therapy. The detection method includes: collecting physiological information of a sampler, and performing blood vessel and blood flow state data before and during external counterpulsation therapy. Acquisition; segment the arterial tree based on the arterial tree structure model, collect the length and radius data of each blood vessel segment of healthy volunteers, set the baseline reference value, and construct the geometric solution model of the arterial tree; calculate and set the boundary conditions, correction and calibration conditions, and Based on the pulse wave transmission theory and model, the flow rate and pressure pulse wave distribution at each position of the arterial tree are solved and calculated, and the blood perfusion and blood pressure levels of target blood vessel segments and organs before and during external counterpulsation treatment are calculated. The invention can non-invasively, real-time and effectively analyze the immediate hemodynamic effect of external counterpulsation intervention treatment, and solves the technical bottleneck that the current external counterpulsation therapy lacks an effective instant hemodynamic effect evaluation method.
Owner:THE EIGHTH AFFILIATED HOSPITAL SUN YAT SEN UNIV

Method for indirectly estimating and measuring arterial blood pressure by using PPG sensor

InactiveCN111789581ASpecific and comprehensive continuous state measurement informationEasy to operateEvaluation of blood vesselsAngiographyArterial velocityArterial tree
The invention discloses a method for indirectly estimating and measuring arterial blood pressure by using a PPG sensor. The method is characterized by comprising the following steps of: 1, synchronously measuring a pulse wave signal of a point close to the heart and a pulse wave signal of a point away from the heart on any local arterial segment of an arterial tree of a subject through the PPG sensor; step 2, calculating a pulse wave velocity (PWV) of the local arterial segment according to the measured pulse wave signals; and step 3, according to the PWV obtained in the step 2, indirectly estimating the basic pressure P of an arterial blood pressure through correlation between the arterial blood pressure measured by an auscultation method and an oscillography method and the PWV of the related arterial segment. The method is noninvasive, free of oversleeves and invasion, free of management by specially-assigned persons and capable of being continuously used for a long time; an arterialblood flow does not need to be blocked when a systolic pressure is measured; the problems that long-time wearing is needed in actual detection operation, the monitoring difficulty is large, and disturbance to a patient is large are solved; and the effect of better actual operability is achieved.
Owner:感易(上海)传感技术有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products