Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

242 results about "Pressure waveform" patented technology

BODY-WORN SYSTEM FOR MEASURING CONTINUOUS NON-INVASIVE BLOOD PRESSURE (cNIBP)

The present invention provides a technique for continuous measurement of blood pressure based on pulse transit time and which does not require any external calibration. This technique, referred to herein as the ‘Composite Method’, is carried out with a body-worn monitor that measures blood pressure and other vital signs, and wirelessly transmits them to a remote monitor. A network of body-worn sensors, typically placed on the patient's right arm and chest, connect to the body-worn monitor and measure time-dependent ECG, PPG, accelerometer, and pressure waveforms. The disposable sensors can include a cuff that features an inflatable bladder coupled to a pressure sensor, three or more electrical sensors (e.g. electrodes), three or more accelerometers, a temperature sensor, and an optical sensor (e.g., a light source and photodiode) attached to the patient's thumb.
Owner:SOTERA WIRELESS

Vital sign monitor for measuring blood pressure using optical, electrical and pressure waveforms

A method and apparatus for continuous measurement of blood pressure, based on pulse transit time, which does not require any external calibration. This technique, referred to herein as the ‘composite technique’, is carried out with a body-won sensor that measures blood pressure and other vital signs, and wirelessly transmits them to a remote monitor. A network of disposable sensors, typically placed on the patient's right arm and chest, connect to the body sensor and measure a time-dependent electrical waveform, optical waveform, and pressure waveform. The disposable sensors typically include an armband that features an inflatable bladder coupled to a pressure sensor, at least 3 electrical sensors (e.g. electrodes), and an optical sensor (e.g., a light source and photodiode) attached to a wrist-worn band.
Owner:SOTERA WIRELESS

Patient-ventilator synchronization using dual phase sensors

An improved ventilator which delivers ventilatory support that is synchronized with the phase of the patient's respiratory efforts and guarantees a targeted minimum ventilation. Improved synchronization is achieved through an instantaneous respiratory phase determination process based upon measured respiratory airflow as well as measured respiratory effort using an effort sensor accessory, preferably a suprasternal notch sensor. The ventilator processes a respiratory airflow signal, a respiratory effort signal and their respective rates of change to determine a phase using standard fuzzy logic methods. A calculated pressure amplitude is adjusted based upon the calculated phase and a smooth pressure waveform template to deliver synchronized ventilation.
Owner:RESMED LTD

Adjustment of ventilator pressure-time profile to balance comfort and effectiveness

The invention is a ventilator whose servo-controller adjusts the degree of support by adjusting the profile of the pressure waveform as well as the pressure modulation amplitude. As the servo-controller increases the degree of support by increasing the pressure modulation amplitude, it also generates a progressively more square, and therefore efficient, pressure waveform; when the servo-controller decreases the degree of support by decreasing the pressure modulation amplitude, it also generates a progressively more smooth and therefore comfortable pressure waveform.
Owner:RESMED LTD

BODY-WORN SYSTEM FOR MEASURING CONTINUOUS NON-INVASIVE BLOOD PRESSURE (cNIBP)

The present invention provides a technique for continuous measurement of blood pressure based on pulse transit time and which does not require any external calibration. This technique, referred to herein as the ‘Composite Method’, is carried out with a body-worn monitor that measures blood pressure and other vital signs, and wirelessly transmits them to a remote monitor. A network of body-worn sensors, typically placed on the patient's right arm and chest, connect to the body-worn monitor and measure time-dependent ECG, PPG, accelerometer, and pressure waveforms. The disposable sensors can include a cuff that features an inflatable bladder coupled to a pressure sensor, three or more electrical sensors (e.g. electrodes), three or more accelerometers, a temperature sensor, and an optical sensor (e.g., a light source and photodiode) attached to the patient's thumb.
Owner:SOTERA WIRELESS

BODY-WORN SYSTEM FOR MEASURING CONTINUOUS NON-INVASIVE BLOOD PRESSURE (cNIBP)

The present invention provides a technique for continuous measurement of blood pressure based on pulse transit time and which does not require any external calibration. This technique, referred to herein as the ‘Composite Method’, is carried out with a body-worn monitor that measures blood pressure and other vital signs, and wirelessly transmits them to a remote monitor. A network of body-worn sensors, typically placed on the patient's right arm and chest, connect to the body-worn monitor and measure time-dependent ECG, PPG, accelerometer, and pressure waveforms. The disposable sensors can include a cuff that features an inflatable bladder coupled to a pressure sensor, three or more electrical sensors (e.g. electrodes), three or more accelerometers, a temperature sensor, and an optical sensor (e.g., a light source and photodiode) attached to the patient's thumb.
Owner:SOTERA WIRELESS

Neuromuscular monitoring using phonomyography

A neuromuscular monitoring system comprises at least one neurostimulator to apply muscle-activating stimulation signals to a patient's body via at least one electrode, and at least one pressure waveform sensor to detect pressure waveform signals produced by a patient's muscle in response to the applied stimulation signals. The detected pressure waveform signals are processed and data related to these detected pressure waveform signals are displayed. A method for neuromuscular monitoring using pressure waveform sensors is also described.
Owner:UNIV DE MONTREAL +2

Systems and Methods for Model-Based Estimation of Cardiac Output and Total Peripheral Resistance

The methods and systems for estimating cardiac output and total peripheral resistance include observing arterial blood pressure waveforms to determine intra-beat and inter-beat variability in arterial blood pressure and estimating from the variability a time constant for a lumped parameter beat-to-beat averaged Windkessel model of the arterial tree. Uncalibrated cardiac output and uncalibrated total peripheral resistance may then be calculated from the time constant. Calibrated cardiac output and calibrated total peripheral resistance may be computed using calibration data, assuming an arterial compliance that is either constant or dependent on mean arterial blood pressure. The parameters of the arterial compliance may be estimated in a least-squares manner.
Owner:MASSACHUSETTS INST OF TECH

Method and Apparatus for Determining the Permeability of Earth Formations

A method and apparatus for determining the fluid permeability of an earth formation is described. An instrument comprising an acoustic source and acoustic and electrokinetic sensors is located in a borehole at a site of interest. The acoustic source is fired and the resulting variations in pressure and electric field generated are measured and recorded. The Biot equation, and an equation for the streaming potential coupled to fluid displacement terms, is solved using finite element analysis to give an expected pressure waveform and electrokinetic waveform based on estimated earth formation properties. By comparison of the measured waveforms and those calculated from the equations, the actual permeability of the earth formation can be deduced.
Owner:SONDEX WIRELINE

Body-worn system for measuring continuous non-invasive blood pressure (cNIBP)

The present invention provides a technique for continuous measurement of blood pressure based on pulse transit time and which does not require any external calibration. This technique, referred to herein as the ‘Composite Method’, is carried out with a body-worn monitor that measures blood pressure and other vital signs, and wirelessly transmits them to a remote monitor. A network of body-worn sensors, typically placed on the patient's right arm and chest, connect to the body-worn monitor and measure time-dependent ECG, PPG, accelerometer, and pressure waveforms. The disposable sensors can include a cuff that features an inflatable bladder coupled to a pressure sensor, three or more electrical sensors (e.g. electrodes), three or more accelerometers, a temperature sensor, and an optical sensor (e.g., a light source and photodiode) attached to the patient's thumb.
Owner:SOTERA WIRELESS

Methods and apparatus for determining cardiac output and left atrial pressure

Method and apparatus are introduced for determining proportional cardiac output (CO), absolute left atrial pressure (LAP), and / or other important hemodynamic variables from a contour of a circulatory pressure waveform or related signal. Certain embodiments of the invention provided herein include the mathematical analysis of a pulmonary artery pressure (PAP) waveform or a right ventricular pressure (RVP) waveform in order to determine beat-to-beat or time-averaged proportional CO, proportional pulmonary vascular resistance (PVR), and / or LAP. The invention permits continuous and automatic monitoring of critical hemodynamic variables with a level of invasiveness suitable for routine clinical application. The invention may be utilized, for example, to continuously monitor critically ill patients with pulmonary artery catheters installed and chronically monitor heart failure patients instrumented with implanted devices for measuring RVP.
Owner:MASSACHUSETTS INST OF TECH +1

Patient-ventilator synchronization using dual phase sensors

An improved ventilator which delivers ventilatory support that is synchronized with the phase of the patients respiratory efforts and guarantees a targeted minimum ventilation. Improved synchronization is achieved through an instantaneous respiratory phase determination process based upon measured respiratory airflow as well as measured respiratory effort using an effort sensor accessory, preferably a suprasternal notch sensor. The ventilator processes a respiratory airflow signal, a respiratory effort signal and their respective rates of change to determine a phase using standard fuzzy logic methods. A calculated pressure amplitude is adjusted based upon the calculated phase and a smooth pressure waveform template to deliver synchronized ventilation.
Owner:RESMED LTD

Volume Status Monitor: Peripheral Venous Pressure, Hypervolemia and Coherence Analysis

Systems and methods are provided for monitoring changes in blood volume using waveforms in the peripheral vasculature. In particular, the systems and methods relate to detecting ventilation-induced variation (VIV) of waveforms in the peripheral vasculature. Advantageously, the systems and methods may relate to analyzing VIV in peripheral venous pressure (PVP). Thus, the VIV of PVP may be measured, wherein decreased VIV is indicative of decreased blood volume In exemplary embodiments, such as involving spontaneous breathing, it may be necessary to account for changes in respiratory signal strength. Thus systems and methods are also provided for assessing coherence between ventilation and VIV for a flow or pressure waveform. Specifically, coherence is evaluated by comparing the waveform to a detected respiratory signal. Finally, systems and method are provided for distinguishing the impact of respiration on the PG signal during hypervolemia as compared to hypovolemia. Such systems and methods may advantageously be utilized to monitor fluid status during fluid replacement.
Owner:SHELLEY KIRK H +2

Blood vessel of brain circulation kinetic analysis method and apparatus

The invention relates to a brain vascular blood circulation dynamic analysis method and the apparatus thereof. According to the cerebral circulation vascular bed anatomical model, an equivalent network model which comprises 12 pipeline units simulating the brain circulation blood dynamics is built, and the relevant parameter calculation formulas are confirmed, by utilizing the formulas, the flow rate waveform and the value inside the cartid artery, the pressure waveform, the blood pressure of the body, the diameter of the blood vessel, the flow rate waveform and the valve of the vertebral artery and the front, the middle and the rear parts on two sides inside the skull, and the characteristic and the parameter of the cartid artery and each blood vessel section inside the skull can be determined, the apparatus designed by the invention can be performed, the detecting system comprises the vessel diameter detecting of the cartid artery outside the skull, the blood pressure detecting, theblood flow rate detecting of the cartid artery outside the skull, the pressure waveform detecting of the cartid artery outside the skull, and the blood flow rate detecting on the artery inside the skull; the control system comprises a control module and a power supply module; the calculation and analysis system comprises a host computer, a peripheral equipment, and an analog-digital converter, the invention can fully analyze the brain circulation dynamic characteristic, thereby having notable effect on the early stage and the ultra early stage diagnosis and therapy of the brain vascular illness.
Owner:SHANGHAI KUANGFU MEDICAL EQUIP DEV

Injection control device of internal combustion engine

A fuel injection control device (ECU) for controlling injection supply of fuel to an engine is applied to an injector that has a valve body formed with a fuel injection hole, a needle accommodated in the valve body for opening and closing the injection hole, and a piezoelectric element for driving the needle such that the needle reciprocates and that can continuously adjust an injection rate in accordance with an injection command signal to the piezoelectric element. The fuel injection control device senses a fuel pressure waveform indicating a transition of fuel pressure fluctuation accompanying a predetermined injection of the injector based on an output of a fuel pressure sensor and calculates an injection command signal for approximating a predetermined injection parameter concerning the predetermined injection to a reference value of the parameter based on the sensed fuel pressure waveform.
Owner:DENSO CORP

Neuromuscular monitoring using phonomyography

A neuromuscular monitoring system comprises at least one neurostimulator to apply muscle-activating stimulation signals to a patient's body via at least one electrode, and at least one pressure waveform sensor to detect pressure waveform signals produced by a patient's muscle in response to the applied stimulation signals. The detected pressure waveform signals are processed and data related to these detected pressure waveform signals are displayed. A method for neuromuscular monitoring using pressure waveform sensors is also described.
Owner:UNIV DE MONTREAL +2

Fuel injection device and fuel injection system

A fuel injection device includes a fuel injection valve for injecting fuel, which is distributed from a pressure-accumulation vessel. A pressure sensor is located in a fuel passage, which extends from the pressure-accumulation vessel to a nozzle hole, and configured to detect pressure of the fuel. The pressure sensor is located closer to the nozzle hole than the pressure-accumulation vessel. A storage unit stores individual difference information, which indicates an injection characteristic of the fuel injection valve, the injection characteristic being obtained by an examination. The individual difference information is related to a fluctuation pattern of a portion of the fluctuation in detected pressure waveform of the pressure sensor. The fluctuation is attributed to one fuel injection through the nozzle hole. The portion of the fluctuation is subsequent to an end of the fuel injection.
Owner:DENSO CORP

Mutual correlation technology for measuring permeability stress sensitivity of ultra-low permeability rocks

ActiveCN103528934ASolve the problem of permeability stress sensitivity measurementLarge stress potentialPermeability/surface area analysisCross correlation analysisRock core
The invention provides a mutual correlation technology for measuring permeability stress sensitivity of ultra-low permeability rocks. The technology comprises the following steps: a) an ultra-low permeability rock core of shale or tight sand rock and the like is selected, and processed into a cylindrical sample; b) a cylindrical steel block standard sample is processed for system calibration; c) the measurement of ultra-low permeability is carried out through a periodic oscillation method, the pore medium can employ gas or water, and the measurement result of the steel block is used for calibrating the system; d) the rock core is placed in a clamp holder, and applied with confining pressure and pore pressure, the rock core is saturated, An upstream sine pressure wave is applied and kept constant, the responses of the downstream pressure waves at different confining pressures are measured; e) the downstream pressure waves at different confining pressures are subjected to mutual correlation analysis, the change of permeability with confining pressure is obtained. Combined with a periodic oscillation method for measurement of permeability of ultra-low permeability rocks, pressure waveforms for measurement of permeability are subjected to mutual correlation analysis, the precision of measurement of permeability change is raised, and the problem of measurement of ultra-low permeability stress sensitivity is solved.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)

Method for detecting filter clogging by using pressure information, apparatus for monitoring filter clogging and bed-side system

A method is provided for detecting filter clogging which are able to keep track of the filter clogging with precision and in detail. At least one pressure selected from the group consisting of a pressure Pa in a blood inflow portion (32a), a pressure Pv in a blood outflow portion (32b), a pressure Pf1 in a filtrate inflow portion (32c), and a pressure Pf2 in a filtrate outflow portion (32d) is measured continuously, then a variation (pressure waveform) of the pressure is analyzed, a clogging of a filter (32) is detected using the analyzed result. Thereby a clogging of a filter is detected early. As a result, it is possible to prevent from developing of the filter clogging by controlling a dosage amount of anti-coagulant properly and changing a flow rate of blood. The variation of the pressure wave may be analyzed by subjecting the variable to Fast Fourier Transform.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Determination of patency of the airway

Methods and apparatus for determining the occurrence of an apnea, patency and / or partial obstruction of the airway are disclosed. Respiratory air flow from a patient is measured to give an air flow signal. The determination of an apnea is performed by calculating the variance of the air flow signal over a moving time window and comparing the variance with a threshold value. One determination of partial obstruction of the airway is performed by detecting the inspiratory part of the air flow signal, scaling it to unity duration and area and calculating an index value of the amplitude of the scaled signal over a mid-portion. Alternatively, the index value is a measure of the flatness of the air flow signal over the mid-portion. One determination of patency of the airway is performed by applying an oscillatory pressure waveform of known frequency to a patient's airway, calculating the magnitude of the component of said air flow signal at the known frequency induced by the oscillatory pressure waveform and comparing the calculated magnitude with a threshold value. Alternatively, the air flow signal is analysed to detect the presence of a component due to cardiogenic activity.
Owner:RESMED LTD

Automated control mechanisms in a hemodialysis apparatus

A hemodialysis apparatus comprising diaphragm pumps for the movement of both dialysate and blood, and under the control of a controller, is capable of detecting blood flow conditions that give rise to an alarm and implement procedures to adjust, pause, or halt the pumping of dialysate and / or blood. The controller can direct the application of a time-varying pressure to fluid in the control chamber of a blood pump, and monitor the resulting pressure waveform during a fill stroke of the blood pump. A deviation of the measured pressure variation from an expected value can give rise to an alert to a user and to the initiation of an adjustment, pause, or cessation of the dialysate pump's activity.
Owner:DEKA PROD LLP

Systems and methods for model-based estimation of cardiac ejection fraction, cardiac contractility, and ventricular end-diastolic volume

The methods and systems for estimating cardiac ejection fraction, cardiac contractility, and ventricular end-diastolic volume on a beat-by-beat basis include observing arterial blood pressure waveforms to determine ventricular compliances for a pressure-volume loop in the ventricle. Uncalibrated or calibrated cardiac ejection fraction may be calculated from estimates of stroke volume and the ventricular compliances. Cardiac contractility may be calculated from estimates of a ventricular compliance. Uncalibrated or calibrated ventricular end-diastolic volume may also be calculated from estimates of stroke volume and the ventricular compliances. A set of calibration parameters for calibrating cardiac ejection fraction or ventricular end-diastolic volume may be estimated in a least-squares manner.
Owner:MASSACHUSETTS INST OF TECH +1

System and method for measuring blood viscosity

ActiveUS20070123779A1Accurate and non-invasive blood viscosity measurementBlood flow measurement devicesHealth-index calculationBlood flowBiomedical engineering
A technique is provided for computing or monitoring blood viscosity. The technique includes measuring a cross sectional area of a arterial segment and a volumetric flow rate of blood flowing through the arterial segment at two or more locations, estimating a compliance transfer function from blood measurements to scale the arterial cross sectional area into a pressure waveform, deriving a transmission line model of the arterial segment based on the cross sectional area, as scaled by the compliance transfer function, of the arterial segment at the two or more locations and the volumetric flow rate of blood at the two or more locations. The technique also includes computing the blood viscosity based on the transmission line model.
Owner:GENERAL ELECTRIC CO

Identification means

A pump supplies pressurized air to inflate compression garments, mattresses, cushions, or similar at the desired times and to desired pressures appropriate to the therapy. The garments are each identified by small steps generated in the pressure waveform during inflation, with the identifying means including a flat sheet valve in the connector chamber having vents to atmosphere and being situated along the flow path from the pump to the garment(s). As the air flows through the connection tubing and through the connector a pressure wave is generated by the valve and fed back upstream to a pressure sensor in the pump. The shape of the pressure waveform identifies a particular compression garment, the pump supplying the appropriate inflation regime upon detection of this pressure waveform.
Owner:HUNTLEIGH TECH LTD

Devices and methods for treatment of heart failure and associated conditions

Devices and methods of use identification, treatment, and / or management of heart failure and / or associated conditions. Methods may include providing a baroreflex therapy system, providing an implantable measurement device proximate a blood vessel of a patient, the implantable measurement device including a plurality of electrodes, determining an impedance of the blood vessel with the implantable measurement device over a time period of at least one cardiac cycle, generating at least one signal representative of a pressure waveform based on the impedance, activating, deactivating or otherwise modulating the baroreflex therapy system to deliver a therapy to treat heart failure based at least in part on the at least one signal representative of the pressure waveform.
Owner:CVRX

System and method for measuring blood viscosity

A technique is provided for computing or monitoring blood viscosity. The technique includes measuring a cross sectional area of a arterial segment and a volumetric flow rate of blood flowing through the arterial segment at two or more locations, estimating a compliance transfer function from blood measurements to scale the arterial cross sectional area into a pressure waveform, deriving a transmission line model of the arterial segment based on the cross sectional area, as scaled by the compliance transfer function, of the arterial segment at the two or more locations and the volumetric flow rate of blood at the two or more locations. The technique also includes computing the blood viscosity based on the transmission line model.
Owner:GENERAL ELECTRIC CO

Noninvasive method and apparatus to measure central blood pressure using extrinsic perturbation

Method to obtain continuous recording of the central arterial blood pressure waveform noninvasively utilizes dual (distal occlusion and proximal) brachial artery occlusion cuffs and dual external osculation. The distal arterial occlusion cuff eliminates venous stasis artifact and flow related gradient from aorta to the brachial artery. The proximal cuff measures, and delivers, dual external oscillation. The dual external oscillation allows measurement of the arterial compliance at a multitude of transmural pressure values during each cardiac cycle. Transmural pressure / arterial compliance and arterial pressure curves are subsequently reconstructed using dual external oscillation. The curves consist of two parts, rapid and slow parts, both at the frequency higher than the arterial pulse.
Owner:PRANEVICIUS OSVALDAS +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products