Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1584 results about "Pressure wave" patented technology

The name P-wave can stand for either pressure wave (as it is formed from alternating compressions and rarefactions) or primary wave (as it has high velocity and is therefore the first wave to be recorded by a seismograph). Seismic waves in the Earth

Wearable Pulse Wave Velocity Blood Pressure Sensor and Methods of Calibration Thereof

An apparatus and methods for performing a circulatory measurement on an extremity, such as a hand, of a subject. The circulatory measurement results in the derivation of an output circulatory metric that may encompass blood pressure or various other circulatory metrics. An indicator of an input circulatory metric at a locus on the extremity is measured, such as a pulse transit time. To determine the pulse transit time, a first plethysmographic signal may be obtained at a first position on the extremity, while a second plethysmographic signal may be obtained at a second position on the extremity of the subject. A transit time characterizing a circulatory pressure wave is calculated based on the first and second plethysmographic signals, leading to derivation of a wave speed. A calibration is then applied to provide the circulatory measurement based at least on the derived wave speed and a measured indicator of a hydrostatic component of blood pressure. Calibration is provided, in certain described embodiments, by derivation of two calibration parameters, a gain and a pulse transit time at zero pressure. Methods for deriving the calibration parameters include performing measurements under distinct hydrostatic pressure conditions, and based upon a measured derivative with respect to pressure of the pulse wave velocity.
Owner:MASSACHUSETTS INST OF TECH

Ultrasonic medical device and associated method

A medical system includes a carrier and a multiplicity of electromechanical transducers mounted to the carrier, the transducers being disposable in effective pressure-wave-transmitting contact with a patient. Energization componentry is operatively connected to a first plurality of the transducers for supplying the same with electrical signals of at least one pre-established ultrasonic frequency to produce first pressure waves in the patient. A control unit is operatively connected to the energization componentry and includes an electronic analyzer operatively connected to a second plurality of the transducers for performing electronic 3D volumetric data acquisition and imaging (which includes determining three-dimensional shapes) of internal tissue structures of the patient by analyzing signals generated by the second plurality of the transducers in response to second pressure waves produced at the internal tissue structures in response to the first pressure waves. The control unit includes phased-array signal processing circuitry for effectuating an electronic scanning of the internal tissue structures which facilitates one-dimensional (vector), 2D (planar), and 3D (volume) data acquisition. The control unit further includes circuitry for defining multiple data gathering apertures and for coherently combining structural data from the respective apertures to increase spatial resolution. When the data gathering apertures are contained in a flexible web or carrier so that the instantaneous positions of the data gathering apertures are unknown, a self-cohering algorithm is used to determine their positions so that coherent aperture combining can be performed.
Owner:WILK ULTRASOUND OF CANADA

Hydro-oscillator for well drilling

The invention relates to a hydro-oscillator for well drilling. The hydro-oscillator consists of a hydraulic driving assembly, a fixed valve assembly, a bottom assembly and a vibrating pipe nipple, wherein the vibrating pipe nipple is connected with the hydraulic driving assembly; a rotor is connected with a vibrating valve; the fixed valve assembly is arranged on the bottom assembly; and a power shell is connected with the bottom assembly. A drilling fluid is used for driving the rotor to rotate, and the rotor is used for driving the vibrating valve to vibrate, so that flow holes of the vibrating valve and a fixed valve are staggered with each other, and simple harmonic pressure waves are modulated and are upwardly transmitted to a disc spring for driving the vibrating shell to perform continuous simple harmonic vibration in the axial direction, so that the friction resistance between a drilling column and a well wall is improved effectively, and the drilling speed is increased; and meanwhile, pressure waves are downwardly transmitted to drill bit jet flow, so that periodic change of rock breaking pressure is facilitated, and rocks are crushed effectively. The hydro-oscillator has the characteristics of simple structure, convenience for operating, safety, reliability, low pressure drop, high adaptability, no influence on the drilling tool structure and the like, and plays an important role in increasing the drilling speed and reducing cost.
Owner:CHINA PETROCHEMICAL CORP +1

System for performing an analysis of pressure-signals derivable from pressure measurements on or in a body

A system for performing an analysis of pressure-signals derivable from pressure measurements on or in a body of a human being or animal, includes a communication interface for receiving a set of digital pressure sample values, a memory for storing these values, and a processor capable of performing the analysis, the processor having means to identify features related to single pressure waves in the pressure signals based on input of the digital data into the processor, and the processor further having determination means which based on the features is configured to a) determine a minimum pressure value related to diastolic minimum value and a maximum pressure value related to systolic maximum value, b) determine at least one parameter of the single wave parameters elected from the group of: pressure amplitude=ΔP=[(maximum pressure value)−(minimum pressure value)], latency (ΔT), rise time or rise time coefficient=ΔP / ΔT, and wavelength of the single wave, c) determine number of the single pressure waves occurring during a given time sequence, including determination of the number of single pressure waves with pre-selected values of one or more of the single pressure wave parameters during the given time sequence, and d) determine number of single pressure waves with pre-selected combinations of two or more of the single pressure wave parameters during the given time sequence. Further, the system has a display for visual presentation of the result of analysis performed by the processor.
Owner:SENSOMETRICS AS (NO)

Pressure wave generator and process for manufacturing the same

Even when compression stress is generated because a volume of a thermal insulation layer 2 is expanded due to oxidized by oxygen in the air, occurrence of cracks and fractures of the thermal insulation layer and a heating conductor 3 caused by the cracks are prevented by dispersing the compression stress. A pressure wave generator comprises a substrate 1, the thermal insulation layer 2 of porous material which is formed on a surface of the substrate 1 in thickness direction, and the heating conductor 3 of thin film formed on the thermal insulation layer 2, and generates pressure waves by heat exchange between the heating conductor 3 and a medium. When a thickness at the center of the thermal insulation layer 2 in width direction W is used as a reference thickness, and it is assumed that distribution of thickness of thermal insulation layer in the width direction is averaged with the reference thickness, porosity in an outer peripheral portion of the thermal insulation layer is made smaller than porosity in the center portion. By making the porosity in the outer peripheral portion of the thermal insulation layer 2 smaller, a number of immovable points on the outer periphery of the thermal insulation layer 2 restricted by the substrate 1 is increased and the positions of them are dispersed, so that the compression stress compressed in the outer peripheral portion of the thermal insulation layer 2 can be dispersed.
Owner:MATSUSHITA ELECTRIC WORKS LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products