Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2249 results about "Energy distribution" patented technology

The Distribution of Energy The distribution of a fixed amount of energy among a number of identical particles depends upon the density of available energy states and the probability that a given state will be occupied.

Diffraction grating based interferometric systems and methods

Diffraction grating based fiber optic interferometric systems for use in optical coherence tomography, wherein sample and reference light beams are formed by a first beam splitter and the sample light beam received from a sample and a reference light beam are combined on a second beam splitter. In one embodiment, the first beam splitter is an approximately 50 / 50 beam splitter, and the second beam splitter is a non 50 / 50 beam splitter. More than half of the energy of the sample light beam is directed into the combined beam and less than half of the energy of the reference light beam are directed into the combined beam by the second beam splitter. In another embodiment, the first beam splitter is a non 50 / 50 beam splitter and the second beam splitter is an approximately 50 / 50 beam splitter. An optical circulator is provided to enable the sample light beam to bypass the first beam splitter after interaction with a sample. Two combined beams are formed by the second beam splitter for detection by two respective detectors. More than half of the energy of the light source provided to the first beam splitter is directed into the sample light beam and less than half of the energy is directed into the reference light beam. The energy distribution between the sample and reference light beams can be controlled by selection of the characteristics of the beam splitters.
Owner:BOSTON SCI SCIMED INC

System for optimal energy harvesting and storage from an electromechanical transducer

A device for collection of energy from mechanical disturbances and distribution of that energy to an electrical load. A transducer converts mechanical energy in the form of forces and displacements into electrical energy in the form of charge pulses. The charge pulses are rectified into a Direct Current (DC) power signal and accumulated and stored in an input storage element. A controlled conversion circuit assures that the voltage on the storage element is maintained within a predetermined optimal range for energy harvesting from the transducer, avoiding the application of peak voltages. The controlled conversion circuit can be hard wired and/or controllably adjustable to match a given disturbance characteristic. Only when the voltage is within the optimal range for a given type of disturbance will the controlled conversion circuit enable a DC/DC converter to further convert the stored energy to a voltage that is coupled to an output storage element. This technique optimizes power conversion by controlling the high voltage to low version conversion process by, for example, sensing the disturbance with external sensor or internal voltage of the system, and then using this information about the disturbance to control how and when the electrical conversion process will occur.
Owner:POLATIS PHOTONICS INC

Method for projection-type laser etching on free curved surface

The invention discloses a method for projection-type laser etching on a free curved surface. By combining a laser galvanometer as well as a triaxial coordinate positioning technology and adopting the principles of partitioned parallel projection as well as height mapping, the invention directly conducts precise surface laser etching on the basis of a discrete point cloud model of a free curved surface part. The method has the characteristic that the laser etching properties such as the shape and size of a spot and the energy distribution remain unchanged within the focal depth range of a focusing lens, so that the free curved surface is converted into a plurality of plane subblocks for processing, and the high-precision processing efficiency of the free curved surface can be improved even by adopting the existing laser etching technology. The diameter of the focusing spot of a laser beam can reach tens of microns and is much smaller than the size of the part processed by a traditional knife tool; and the processing precision of nearly 10 microns can be realized by controlling the laser energy property. Under the premise of meeting the demands for high precision and high efficiency of pattern etching on the free curved surface, the method can realize high reliability and high flexibility in the processing of the free curved surface.
Owner:武汉飞能达激光技术有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products