Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2804 results about "Helium" patented technology

Helium (from Greek: ἥλιος, romanized: Helios, lit. 'Sun') is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas, the first in the noble gas group in the periodic table. Its boiling point is the lowest among all the elements. Helium is the second lightest and second most abundant element in the observable universe (hydrogen is the lightest and most abundant). It is present at about 24% of the total elemental mass, which is more than 12 times the mass of all the heavier elements combined. Its abundance is similar to this in both the Sun and in Jupiter. This is due to the very high nuclear binding energy (per nucleon) of helium-4, with respect to the next three elements after helium. This helium-4 binding energy also accounts for why it is a product of both nuclear fusion and radioactive decay. Most helium in the universe is helium-4, the vast majority of which was formed during the Big Bang. Large amounts of new helium are being created by nuclear fusion of hydrogen in stars.

Aerosol deliver apparatus IV

A multipurpose aerosol medication delivery apparatus that includes a collapsible/expandable, or a fixed volume, or a combination of partially fixed volume and partially collapsible/expandable holding chamber for use with a metered dosed inhaler (MDI) and/or any standard small volume nebulizer. The holding chamber is designed to deliver-aerosol medication particles generated by an MDI; aerosol medication particles generated by a nebulizer; a single gas or a mixture of gases; a single gas or a mixture of gases that can yield a gas density that will enhance aerosol delivery of medication with both MDI and nebulizer; a single gas or a mixture of gases that will yield and deliver an oxygen concentration to a patient ranging from room air concentration to 100%. The device includes a reservoir that stores nebulized aerosol generated during exhalation to be inhaled during the next breath. The device also included a one way valve to prevent carbon dioxide generated during exhalation from rebreathing by not allowing the exhaled air from entering the holding chamber. The device includes an exit port with a second one way valve that allows the exhaled air to exit the device but closes during inhalation to prevent any entrainment of room air gas. The exit port may instead have a filter with one-way valve to trap the exhaled aerosol particles while allowing the exhaled gases to escape. The filter valve will similarly close during inhalation to prevent entrainment of room air gas. The holding chamber will allow a uniform mixture of aerosol medication and gases to flow together during inhalation to the patient via a mouthpiece or a facemask. The holding chamber is connected to a nebulizer chamber with a single or multiple connecting tubes that allow gas mixtures with varying density, viscosity, humidity and concentration of oxygen to flow into the holding chamber from the nebulizer chamber. The pattern of flow of the gas(es) does not disturb the flow of the nebulized medication from the nebulizer chamber to the holding chamber or interfere with the plume generated by an MDI. The device also serves as a facemask for delivering precise concentrations of oxygen or as a 100% non-rebreather mask. The device also serves to deliver precise concentrations of different density gases i.e. nitrogen, helium, oxygen, etc. This will allow varying fractions of inspired oxygen to deliver aerosol medication via MDI or a nebulizer. Thus, the device has the ability to deliver aerosol medication with an MDI or a nebulizer while retaining the ability to simultaneously deliver different density gas mixtures and varying fraction of inspired oxygen without interrupting one for the other.
Owner:DHUPER SUNIL +1

System for determing the integrity of a package or packaging material based on its transmission of a test gas

A sealed package's transmission of oxygen, water vapor, carbon dioxide, or other gas or vapor that is of interest because of its potential adverse effects on the package contents is determined indirectly, based upon the package's transmission of a different gas selected as a test gas. Helium is preferred as a test gas. The package's total transmission of the test gas is separated into its components of leakage through the package seals and permeation through the packaging material itself. The package's leakage of the gas of interest is determined based on its leakage of the test gas, in accordance with the molecular weights of the gases. The package's permeation of the gas of interest is determined based on its permeation of the test gas, in accordance with data correlating the permeation of the gas of interest and permeation of the test gas for the materials from which the package is made, and with package structure data relating to the size, shape, and disposition of the materials from which the package is made. The package's total transmission of the gas of interest is determined by adding its leakage and permeation components so determined. Such data may be used with other data to determine a packaged product's shelf life or its sensitivity to a gas of interest.
Owner:MORROW DARRELL R
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products