Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2309 results about "Carbon film" patented technology

Carbon films are thin film coatings which consist predominantly of the chemical element carbon. They include plasma polymer films, amorphous carbon films (diamond-like carbon, DLC), CVD diamond films as well as graphite films.

Process for Preparing Graphene on a SiC Substrate Based on Metal Film-Assisted Annealing

Provided is a process for preparing graphene on a SiC substrate, based on metal film-assisted annealing, comprising the following steps: subjecting a SiC substrate to a standard cleaning process; placing the cleaned SiC substrate into a quartz tube and heating the quartz tube up to a temperature of 750 to 1150° C.; introducing CCl4vapor into the quartz tube to react with SiC for a period of 20 to 100 minutes so as to generate a double-layered carbon film, wherein the CCl4 vapor is carried by Ar gas; forming a metal film with a thickness of 350 to 600 nm on a Si substrate by electron beam deposition; placing the obtained double-layered carbon film sample onto the metal film; subsequently annealing them in an Ar atmosphere at a temperature of 900 to 1100° C. for 10-30 minutes so as to reconstitute the double-layered carbon film into double-layered graphene; and removing the metal film from the double-layered graphene, thereby obtaining double-layered graphene. Also provided is double-layered graphene prepared by said process.
Owner:XIDIAN UNIV

Light emitting device

A light emitting device comprises a plurality of LED chips (“lateral” or “vertical” conducting) operable to generate light of a first wavelength range and a package for housing the chips. The package comprises: a thermally conducting substrate (copper) on which the LED chips are mounted and a cover having a plurality of through-holes in which each hole corresponds to a respective one of the LED chips. The holes are configured such that when the cover is mounted to the substrate each hole in conjunction with the substrate defines a recess in which a respective chip is housed. Each recess is at least partially filled with a mixture of at least one phosphor material and a transparent material. In a device with “lateral” conducting LED chips a PCB is mounted on the substrate and includes a plurality of through-holes which are configured such that each chip is directly mounted to the substrate. For a device with “vertical” conducting LED chips the LED chips are mounted on a diamond like carbon film.
Owner:EPISTAR CORP

Preparation method of metal mono-atoms

The invention relates to a preparation method of metal mono-atoms and belongs to the technical field of materials science and engineering. The metal mono-atoms prepared through the method may include: Pt, Ag, Au, Pd, Rh, Ir, Ru, Co, Ni and Cu, and metal mono-atoms supported on TiO2, zinc oxide, cerium oxide, aluminum oxide, silicon oxide, ferric oxide, manganese oxide, C3N4, mesoporous carbon, ultrathin carbon films, graphene, carbon nano tubes or molecular sieve materials, etc. The method includes the steps of: preparing a precursor solution in a certain concentration, and freezing the solution; and under an ice phase, processing ice cubes by means of external field or reaction between reactants in the ice cubes, and when the ice cubes are molten, a mono-atom solution is finally produced; mixing the mono-atom solution with different materials, performing ultrasonic treatment, filtration, cleaning and drying to finally obtain the mono-atoms supported on various materials. The preparation method is quick, has high product density, allows mass production, is high in efficiency and has wide application range, and compared with a co-precipitation method and an impregnation method, the method has significant advantages.
Owner:TSINGHUA UNIV

Evaluation method of magnetic disk, manufacturing method of magnetic disk, and magnetic disk

InactiveUS20120077060A1Easily evaluate propertyAccurately evaluate propertyMagnetic materials for record carriersRecord information storageCarbon filmRadial position
An evaluation method that can easily evaluate properties of a carbon protective film and a lubricant on a magnetic-disk surface or particularly, an evaluation method of a magnetic disk in which the properties of the magnetic-disk surface can be evaluated accurately so that a strict demand for interactions between the magnetic-disk surface and a head can be met is provided. In a state in which an element portion of the magnetic head provided with the head element portion that projects by thermal expansion is projected, after being brought into contact with a predetermined radial position on the surface of the rotating magnetic disk, the head is further made to perform seeking in a state in which the element portion is projected by a specified amount, whereby the properties of the carbon film or the lubricant formed on the magnetic-disk surface is evaluated.
Owner:WD MEDIA SINGAPORE PTE

Electron emission device, cold cathode field emission device and method for the production thereof, and cold cathode field emission display and method for the production thereof

A cold cathode field emission device comprising (a) a cathode electrode formed on a supporting substrate, and (b) a gate electrode which is formed above the cathode electrode and has an opening portion, and further comprising (c) an electron emitting portion composed of a carbon film formed on a surface of a portion of the cathode electrode which portion is positioned in a bottom portion of the opening portion.
Owner:SONY CORP

Doped multi-layer core-shell silicon-based composite material for lithium ion battery and preparation method thereof

ActiveCN109599551AInhibits and buffers swellingPrevent partial failureMaterial nanotechnologySecondary cellsCarbon filmComposite film
The present invention relates to a doped multi-layer core-shell silicon-based composite material for a lithium ion battery, and a preparation method thereof. Other than being doped with a necessary lithium element, the material is also doped with at least a non-metallic element and a metal element; the material has a structure in which a silicon oxide particle doped with elements is taken as a core, and a multilayer composite film which is tightly coated on the surface of the core particle is taken as a shell; the core particle contains uniformly dispersed monoplasmatic silicon nanoparticles,the content of doping elements gradually decreases from the outside to the inside without a clear interface, and a dense lithium silicate compound is formed on the surface of the core particle by embedding and doping the lithium element; and the multilayer composite film is a carbon film layer and a doped composite film layer composed of the carbon film layer and other elemental components. The doped multi-layer core-shell silicon-based composite material provided by the present invention has a high capacity, good rate performance, high coulombic efficiency, good cycle performance, a low expansion rate, and other electrochemical characteristics when the material is used for the negative electrode of lithium ion battery.
Owner:BERZELIUS (NANJING) CO LTD +1

High-thermal conductivity graphite alkenyl polymer heat conducting film and preparation method thereof

The invention discloses a high-thermal conductivity graphite alkenyl polymer heat conducting film as well as a preparation method and usage thereof. The preparation method comprises the following steps: uniformly mixing graphite alkenyl micro-flakes with macromolecular polymers in various proportions; then making the mixture into a film and further carbonizing and graphitizing the film to obtain the high-thermal conductivity graphite alkenyl polymer heat conducting film. According to the invention, graphite alkenyl materials are used as reinforcing material and additive material to reduce usage amount of macromolecular polymers and to cut down operation cost and environment pollution. Furthermore, defects of macromolecular polymers arising from the carbonizing process are reduced and graphitizing degrees of the macromolecular polymers are raised to greatly improve quality of the heating conducting carbon film, so as to enable the film to be thinner and higher in heat conducting performance.
Owner:苏州格瑞丰纳米科技有限公司

Reusable template for creation of thin films; method of making and using template; and thin films produced from template

The present invention is directed generally to templates used in the creation of thin-film replicas, for example, the creation of thin films, such as carbon films, for use as specimen support in electron-beam specimen analysis. More specifically, the present invention is directed to novel reusable patterned templates, the methodology of making these reusable templates, the templates made from such methodologies, the use and reuse of these templates to make thin films of any type for any purpose, and the thin films made from these templates. A feature of the novel template of the present invention is in its employment of one or more zones of discontinuity, or undercuts, associated with the patterns transferred into the template to allow for the removal of the thin film from the template without sacrificing the structural integrity of the template to prevent at least one re-use of the template.
Owner:EMS ACQUISITION CORP

Si-o containing hydrogenated carbon film, optical device including the same, and method for manufacturing the si-o containing hydrogenated carbon film and the optical device

An Si—O containing hydrogenated carbon film as an optical film has a refractive index in a range from at least 1.48 to at most 1.85 for light of 520 nm wavelength and an extinction coefficient of less than 0.15 for light of 248 nm wavelength, wherein the refractive index and the extinction coefficient are decreased with energy beam irradiation. By utilizing such an Si—O containing hydrogenated carbon film, it is possible to provide various types of optical elements and an optical device including the same.
Owner:SUMITOMO ELECTRIC IND LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products