Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

10003 results about "Composite film" patented technology

A composite film is a feature film whose screenplay is composed of two or more distinct stories. More generally, composite structure refers to an aesthetic principle in which the narrative structure relies on contiguity and linking rather than linearity.

Flexible conductive thin film compositing two-dimensional graphene and one-dimensional nanowire and preparation method thereof

The invention relates to a flexible conductive thin film compositing a two-dimensional graphene and a one-dimensional nanowire and a preparation method of the flexible conductive thin film. The preparation method includes the following steps: dispersing the graphene, the nanowire and dispersion auxiliary in solvent, obtaining graphene/nanowire solvent which is well dispersed after the solvent is processed through ultrasound concussion, and obtaining a graphene/nanowire composite thin film after the graphene/nanowire solvent is processed through vacuum filtration and drying. The thickness of the composite thin film is 10 nanometers to 1000 micrometers, the composite thin film has good strength and flexibility, square resistance is between 0.001 ohm per square and 3000 ohms per square, and electrical conductivity is between 0.01 siemens per centimeter to 5000 siemens per centimeter. The graphene/nanowire composite thin film which is obtained with the adoption of the preparation method has good strength, flexibility, and electrical conductivity, and is controllable in thickness, cuttable in shape, simple in preparing process, easy to operate, low in manufacturing cost, and suitable for solar batteries, energy storage, heat dissipation, catalysis, sensing, and conductive composite material fields.
Owner:SHANGHAI INST OF CERAMIC CHEM & TECH CHINESE ACAD OF SCI

Double-layer composite hot melt adhesive film for bonding metal and plastic

The invention discloses a double-layer composite hot melt adhesive film adhering metal and plastic, which is formed by compounding an upper adhesive film layer and a lower adhesive film layer, wherein the lower adhesive film layer is attached to a piece of release paper, the thickness of the composite adhesive film is 0.05 to 0.20 millimeter, the upper adhesive film layer is a hot melt adhesive layer adhered with the metal, the thickness of the upper adhesive film layer is 30 to 60 percent of the thickness of the composite film, the lower adhesive film layer is a hot melt adhesive layer adhered with the plastic, the thickness of the lower adhesive film layer is 40 to 70 percent of the thickness of the composite film, and the lower adhesive film layer is attached to a piece of glassine release paper. The double-layer composite hot melt adhesive film directly compounds two modified hot melt adhesives with different adhesive properties, is adhered with the release paper to prevent rolling from adhering and the adhesive film from being damaged, reduces application of a middle isolating layer, reduces the thickness of the composite adhesive film, and is prepared by once casting through coextrusion casting equipment or twice casting through common coextrusion casting equipment. The double-layer composite hot melt adhesive film can be used for composite adhesion of metallic materials such as aluminum, stainless steel and the like and plastic such as ABS, PVC, PET and the like, is particularly suitable for mutual adhesion between sheets, plates and films of the metal and the plastic, and has simple and convenient operation and no pollution.
Owner:GUANGZHOU LUSHAN NEW MATERIALS

Method for preparing multilayer composite membrane for secondary battery by using electrostatic spinning coating method

The invention discloses preparation of a multilayer composite membrane for a secondary battery by using an electrostatic spinning coating technology combined with a pore-forming technology, a manufacturing method of the multilayer composite membrane and the secondary battery prepared by using the membrane. The method is characterized by comprising the following steps of: (1) dissolving a high-molecular organic matter into a solvent to form a high-molecular solution; (2) adding a small-molecular organic matter and/or an inorganic nanometer material into the high-molecular solution to ensure that the small-molecular organic matter is dissolved into the high-molecular solution; dispersing an inorganic nanometer material into the high-molecular solution to form an organic/inorganic mixed solution; (3) uniformly coating the formed organic/inorganic mixed solution on at least one side of a film matrix by using the electrostatic spinning coating technology to form a composite film, and drying the composite film; and (4) extracting the small-molecular organic matter from the dried composite film to continuously dry and form the multilayer composite membrane for the secondary battery. By using the method, an inorganic complex of inorganic membranes is realized quickly and conveniently, the ionic conductivity of the lithium ion battery membrane can be improved, and the heat stability and the security of the battery are guaranteed; and the method has the advantages of being simple in operation and convenient for industrialization.
Owner:LONG POWER SYST SUZHOU

Film made from graphene-carbon nanotube composite material and preparation method of film

The invention discloses a film made from a graphene-carbon nanotube composite material and a preparation method of film. The preparation method comprises the following steps: mixing graphene and carbon nanotubes sufficiently and evenly via stirring and ultrasonic dispersion, reacting the graphene with the carbon nanotubes sufficiently via hydrothermal or solvothermal conditions, removing solvents after finishing the reaction to obtain the graphene-carbon nanotube composite materials which are preformed and tangled in a network structure, forming the film on the surfaces of various base materials via coating, spraying, spin-coating and filtering the obtained graphene-carbon nanotube composite materials to obtain the composite film made from the graphene-carbon nanotube composite materials and the base materials, and removing the base materials to obtain the film made from the graphene-carbon nanotube composite materials. According to the method, graphene-carbon nanotube composition is realized simply and effectively and dispersed in the solvents stably, and the two obtained films can be applied in the aspects of heat conduction and heat radiation systems of high calorific value electronic devices, LED (light-emitting diode) lamps and liquid crystal display products.
Owner:ZHANGJIAGANG KANGDE XIN OPTRONICS MATERIAL

Doped multi-layer core-shell silicon-based composite material for lithium ion battery and preparation method thereof

ActiveCN109599551AInhibits and buffers swellingPrevent partial failureMaterial nanotechnologySecondary cellsCarbon filmComposite film
The present invention relates to a doped multi-layer core-shell silicon-based composite material for a lithium ion battery, and a preparation method thereof. Other than being doped with a necessary lithium element, the material is also doped with at least a non-metallic element and a metal element; the material has a structure in which a silicon oxide particle doped with elements is taken as a core, and a multilayer composite film which is tightly coated on the surface of the core particle is taken as a shell; the core particle contains uniformly dispersed monoplasmatic silicon nanoparticles,the content of doping elements gradually decreases from the outside to the inside without a clear interface, and a dense lithium silicate compound is formed on the surface of the core particle by embedding and doping the lithium element; and the multilayer composite film is a carbon film layer and a doped composite film layer composed of the carbon film layer and other elemental components. The doped multi-layer core-shell silicon-based composite material provided by the present invention has a high capacity, good rate performance, high coulombic efficiency, good cycle performance, a low expansion rate, and other electrochemical characteristics when the material is used for the negative electrode of lithium ion battery.
Owner:BERZELIUS (NANJING) CO LTD +1

Method for preparing grapheme-quantum dot composite film and solar battery structured by using same

The invention relates to a method for preparing a grapheme-quantum dot composite film and a solar battery structured by using the same. The method comprises the following steps of: performing suction filtering on a suspension of grapheme-quantum dot composite powder on a filtering film to obtain a film; and then dissolving the filtering film away with an organic solvent, and transferring the filmto a conductive substrate. The method is characterized in that the ratio of the quantum dot to the grapheme and the thickness of the film can be controlled effectively; in addition, since the film isprepared at normal temperature, the requirement on the conductive substrate is reduced greatly. The prepared film can be used for structuring a novel quantum dot sensitized solar battery. The structured solar battery is of a layer structure, consists of the grapheme-quantum dot film on the conductive substrate, an electrolyte layer and a counter electrode and has the advantages of low cost, simpleness in preparation process, low temperature and stable performance. By the use of the grapheme-quantum dot composite film prepared by the method provided by the invention, the photoelectron transmission performance can be improved, and the photoelectric conversion efficiency of a battery can be enhanced.
Owner:SHANGHAI INST OF CERAMIC CHEM & TECH CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products