Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1377results about "Shielding materials" patented technology

Lightweight audio system for automotive applications and method

A lightweight radio/CD player for vehicular application is virtually “fastenerless” and includes a case and frontal interface formed of polymer based material that is molded to provide details to accept audio devices such as playback mechanisms (if desired) and radio receivers, as well as the circuit boards required for electrical control and display. The case and frontal interface are of composite structure, including an insert molded electrically conductive wire mesh screen that has been pre-formed to contour with the molding operation. The wire mesh provides EMC, RFI, BCI and ESD shielding and grounding of the circuit boards via exposed wire mesh pads and adjacent ground clips. The PCB architecture is bifurcated into a first board carrying common circuit components in a surface mount configuration suitable for high volume production, and a second board carrying application specific circuit components in a wave soldered stick mount configuration. The major components and subassemblies are self-fixturing during the final assembly process, eliminating the need for dedicated tools, fixtures and assembly equipment. The major components and subassemblies self-interconnect by integral guide and connection features effecting “slide lock” and “snap lock” self-interconnection. The radio architecture includes improved push buttons employing 4-bar living hinge linkage and front loaded decorative trim buttons.
Owner:APTIV TECH LTD

Inductive power coupling systems for roadways

An inductive power transfer system (10) for roadways includes at least one drive unit arrangement (50) coupled to at least one drive coil arrangement (40) disposed along a roadway (20) for generating a magnetic field extending upwardly from the roadway (20), and at least one vehicle (30) including a corresponding pickup coil arrangement (60) coupled to a power conditioning circuit arrangement (80, 200) for receiving the extending magnetic field for providing power to operate the at least one vehicle (30). The at least one drive unit arrangement (50) is operable to excite, for example at resonance, the at least one drive coil arrangement (40) at a fundamental frequency (f0) of at least 30 kHz, preferably at least 50 kHz, more preferably at least 100 kHz, and most preferably at least 140 kHz. The at least one drive coil arrangement (40) is implemented to be substantially devoid of ferromagnetic components for providing a path for the extending magnetic field. Optionally, the at least one drive unit arrangement (50) is operable to employ a balanced class-E amplifier arrangement for exciting the at least one drive coil arrangement (40) at the fundamental frequency (f0). Optionally, the at least one drive unit arrangement (50) is operable to employ one or more Silicon Carbide semiconductor devices for switching the currents provided to the corresponding at least one drive coil arrangement (40). Optionally, there is further included a passive and/or active suppression arrangement (100, 110, 120, 130, 140) for suppressing harmonic magnetic field components generated by the system (10) at multiples of the fundamental frequency (f0) when in operation.
Owner:DAMES ANDREW NICHOLAS +2

Electromagnetic wave blocking material and electromagnetic wave blocking case

This invention provides the electromagnetic waves shield material that has a sufficient effect of shielding the electromagnetic waves by making the electric conductive fibers into mesh. And this invention also provides the electromagnetic waves shield mobile phone case that avoids a harmful effect on the human body without reducing the function of communication of the mobile phone used the said electromagnetic waves shield material.
The fibers with electric conductivity are woven into mesh by a general knitting machine like a machine for tricot. The cost is low even used for the wide area to shield the electromagnetic waves because the consumption of the fibers needed is less. The coarseness of the net is maintained the same by controlling the movement of the length and breadth each other.
To avoid the radiation to the head direction, the electromagnetic waves shield material is used for the front and upper sides of the mobile phone case which are the direction to the head when the mobile phone is in use. The regular material without electromagnetic waves shield effect is used for the both sides of the mobile phone case.
The antenna cap with electromagnetic shield structure is attached to the said upper side of the electromagnetic wave shield case. The electricity with high frequency is conducted between the above antenna cap and the upper side of the electromagnetic wave shield case. The said antenna cap is a conic tube cut it's head obliquely. The opening part is made to face in the opposite side of the head when it is attached to the antenna. A metallic pin is attached to the outside of the antenna cap. This metallic pin conducts high frequent electricity with the wire antenna at the mobile phone body when it is attached. It functions as an additional antenna to the wire antenna at the mobile phone body.
Owner:KAZU INVESTMENT

Lightweight audio system for automotive applications and method

A lightweight radio / CD player for vehicular application is virtually “fastenerless” and includes a case and frontal interface formed of polymer based material that is molded to provide details to accept audio devices such as playback mechanisms (if desired) and radio receivers, as well as the circuit boards required for electrical control and display. The case and frontal interface are of composite structure, including an insert molded electrically conductive wire mesh screen that has been pre-formed to contour with the molding operation. The wire mesh provides EMC, RFI, BCI and ESD shielding and grounding of the circuit boards via exposed wire mesh pads and adjacent ground clips. The PCB architecture is bifurcated into a first board carrying common circuit components in a surface mount configuration suitable for high volume production, and a second board carrying application specific circuit components in a wave soldered stick mount configuration. The major components and subassemblies are self-fixturing during the final assembly process, eliminating the need for dedicated tools, fixtures and assembly equipment. The major components and subassemblies self-interconnect by integral guide and connection features effecting “slide lock” and “snap lock” self-interconnection. The radio architecture includes improved push buttons employing 4-bar living hinge linkage and front loaded decorative trim buttons.
Owner:APTIV TECH LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products