Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

8285results about How to "Improve thermal efficiency" patented technology

Combined steam and gas turbine engine with magnetic transmission

In a combined steam and gas turbine engine cycle, a combustion chamber is made durable against high pressure and enlarged in length to increase the operation pressure ratio, without exceeding the heat durability temperature of the system while increasing the fuel combustion gas mass flow four times as much as the conventional turbine system and simultaneously for greatly raising the thermal efficiency of the system and specific power of the combined steam and gas turbine engine.Water pipes and steam pipes are arranged inside the combustion chamber so that the combustion chamber can function as a heat exchanger and thereby convert most of the combustion thermal energy into super-critical steam energy for driving a steam turbine and subsequently raising the operation pressure ratio and the thermal efficiencies of the steam turbine cycle and gas turbine cycle. The combustion gas mass flow can be also increased by four times as much as the conventional turbine system (up to the theoretical air to fuel ratio) and the thermal efficiency and the specific power of the gas turbine cycle are considerably increased.Further, the thermal efficiency of the combined system is improved by installing a magnetic friction power transmission system to transmit the power of the system to outer loads.

Method and apparatus for absorbing thermal energy

The subject invention pertains to a method and apparatus for storing thermal energy. The subject thermal energy storage apparatus can function as a heat absorber in a cooling system. A cooling system can incorporate a cooling cycle that utilizes thermal energy storage and has two coolant loops. The primary cooling loop acquires the waste heat from a heat source, such as an electronic device, by heat transfer to the primary coolant via, for example, a sensible heat process (where sensible heat is heat absorbed or transmitted by a substance during a change in temperature which is not accompanied by a change of state) or by evaporating the primary coolant through a latent heat phase change process. The waste heat absorbed by the primary coolant is transferred to the host material of the heat absorber. The subject invention uses a high thermal conductivity host material to house a lower thermal conductivity phase change material, in order to achieve a thermal energy absorber that has a high effective thermal conductivity. In a specific embodiment, the high thermal conductivity host material has have voids within the structure that can be filled by the phase change material. The increased surface area of phase change material in thermal contact with the host material per volume of phase change material allows the thermal energy to be stored or released quickly, because of the enhanced effective thermal conductivity.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products