Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

7028results about "Therapeutic heating" patented technology

Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue

The present invention provides an apparatus and a method for producing a virtual electrode within or upon a tissue to be treated with radio frequency alternating electric current, such tissues including but not limited to brain, liver, cardiac, prostate, breast, and vascular tissues and neoplasms. An apparatus in accordance with the present invention includes a source of super-cooled fluid for selectively providing super-cooled fluid to the target tissue to cause a temporary cessation of cellular or electrical activity, a supply of conductive or electrolytic fluid to be provided to the target tissue, and alternating current generator, and a processor for creating, maintaining, and controlling the ablation process by the interstitial or surficial delivery of the fluid to a tissue and the delivery of electric power to the tissue via the virtual electrode. A method in accord with the present invention includes delivering super-cooled fluid to the target tissue to cause a temporary cessation of cellular or electrical activity, evaluating whether the temporary cessation of cellular or electrical activity is the desired cessation of cellular or electrical activity, and if so, delivering a conductive fluid to the predetermined tissue ablation site for a predetermined time period, applying a predetermined power level of radio frequency current to the tissue, monitoring at least one of several parameters, and adjusting either the applied power and/or the fluid flow in response to the measured parameters.

High frequency thermal ablation of cancerous tumors and functional targets with image data assistance

This invention relates to the destruction of pathological volumes or target structures such as cancerous tumors or aberrant functional target tissue volumes by direct thermal destruction. In the case of a tumor, the destruction is implemented in one embodiment of the invention by percutaneous insertion of one or more radiofrequency probes into the tumor and raising the temperature of the tumor volume by connection of these probes to a radiofrequency generator outside of the body so that the isotherm of tissue destruction enshrouds the tumor. The ablation isotherm may be predetermined and graded by proper choice of electrode geometry and radiofrequency (rf) power applied to the electrode with or without temperature monitoring of the ablation process. Preplanning of the rf electrode insertion can be done by imaging of the tumor by various imaging modalities and selecting the appropriate electrode tip size and temperature to satisfactorily destroy the tumor volume. Computation of the correct three-dimensional position of the electrode may be done as part of the method, and the planning and control of the process may be done using graphic displays of the imaging data and the rf ablation parameters. Specific electrode geometries with adjustable tip lengths are included in the invention to optimize the electrodes to the predetermined image tumor size.

Technique for using heat flow management to treat brain disorders

A method of treating a brain disorder by heat transfer from brain tissue comprising the steps of surgically cutting a heat transfer aperture into a patient's skull, thereby exposing a predetermined portion of patient's brain; surgically implanting into said heat transfer aperture a heat pump having one or more electrical sensor elements and one or more temperature sensor elements; surgically implanting a heat transfer management unit in a body cavity of said patient such that a micro controller of the heat transfer management unit is connected to one or more activity sensor elements and one or more temperature sensor elements contacting brain tissue and connecting the heat transfer management unit to said heat pump via a lead bundle. Optionally, the heat transfer unit may be located external to the patient's body. Responsive to signals from one or more activity or temperature sensor elements, mathematical algorithms of the heat transfer management unit determine abnormal brain activity, causing the heat pump to remove heat from the brain tissue into a heat sink, thereby cooling the predetermined portion of the patient's brain. This technique utilizes acute hypothermia by means of a Peltier cooler or similar device to cool the brain temperature to reduce or prevent seizure initiation and/or propagation. The method may be used in association with brain stimulation and/or drug application to acutely avoid the occurrence of a seizure episode.

Method and apparatus for location and temperature specific drug action such as thrombolysis

A method is provided of localizing a drug action where the drug is present throughout a vascular system. The localization occurs to within a volume of blood in a blood vessel, the vascular system having an initial temperature substantially within a first temperature range. A temperature-specific enzyme is delivered throughout a vascular system including a volume of blood in a blood vessel, the temperature-specific enzyme having a working temperature within a prespecified temperature range that does not substantially overlap the first temperature range. A heat transfer element is delivered to a blood vessel in fluid communication with the volume of blood. The temperature of the heat transfer element is adjusted such that the volume of blood in the blood vessel is heated or cooled to the prespecified temperature range. In this way, the action of the temperature-specific enzyme is substantially limited to the volume of blood heated or cooled. In an alternative embodiment, the temperature-specific enzyme is localized to the volume of blood in the blood vessel, and the heat transfer element is disposed in fluid communication with the volume of blood in the blood vessel. The enzyme localization may occur by way of direct injection or by way of injection through a lumen of a catheter. The injection lumen of the catheter may be disposed at least partially adjacent or in combination with the heat transfer element and its associated inlet and outlet lumens.

Dual mode electrosurgical clamping probe and related methods

The present invention provides systems, apparatus and methods for selectively applying electrical energy to body tissue in order to ablate, contract, coagulate, or otherwise modify a target tissue or organ of a patients. An electrosurgical apparatus of the invention includes a shaft having a shaft distal end bearing an active electrode and a return electrode. At least one of the active electrode and the return electrode is moveable such that the shaft distal end can adopt a closed configuration or an open configuration. The apparatus can operate in an ablation mode or a sub-ablation mode. The closed configuration is adapted for clamping and coagulating a target tissue while the apparatus is operating in the sub-ablation mode, while the open configuration is adapted for ablating the target tissue via molecular dissociation of tissue components. A method of the present invention comprises clamping a target tissue or organ with an electrosurgical probe. A first high frequency voltage is applied between the active electrode and the return electrode to effect coagulation of the clamped tissue. Thereafter, a second high frequency voltage is applied to effect localized molecular dissociation of the coagulated tissue. The present invention allows the ablation or modification of the target tissue with minimal or no damage to surrounding, non-target tissue.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products