Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1966 results about "Conductive composites" patented technology

Graphene foam with three dimensional fully connected network and macroscopic quantity preparation method thereof

The invention relates to a graphene-based novel material and a chemical vapor deposition preparation technology thereof, in particular to graphene foam with a three dimensional fully connected network and a macroscopic quantity preparation method thereof. The method is suitable for a mass preparation of the graphene foam with high qualities. Three dimensional connected graphene can grow by catalytic cracking of carbon source gases on the surface of a three dimensional porous metal through the chemical vapor deposition technology, and a porous foam-shaped graphene three dimensional macroscopic body can be obtained after a porous metal base is removed by dissolving subsequently. According to the graphene foam with the three dimensional fully connected network and the macroscopic quantity preparation method thereof, a simple template replication method is used for preparing the three dimensional connected graphene macroscopic body, and the method has the advantages that the operation is simple and convenient, the rate of production is high, and the adjustment and control of the structure are easy. The graphene foam forms the fully connected network in a seamless connection mode, has a low density, a high porosity and specific surface area and excellent capabilities of charge conduction and heat conduction and establishes a foundation for applications of graphene in fields of electric conduction, thermally conductive composite materials, electromagnetic shielding, wave absorbing, catalysis, sensing and energy storage materials and the like.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Flexible conductive thin film compositing two-dimensional graphene and one-dimensional nanowire and preparation method thereof

The invention relates to a flexible conductive thin film compositing a two-dimensional graphene and a one-dimensional nanowire and a preparation method of the flexible conductive thin film. The preparation method includes the following steps: dispersing the graphene, the nanowire and dispersion auxiliary in solvent, obtaining graphene/nanowire solvent which is well dispersed after the solvent is processed through ultrasound concussion, and obtaining a graphene/nanowire composite thin film after the graphene/nanowire solvent is processed through vacuum filtration and drying. The thickness of the composite thin film is 10 nanometers to 1000 micrometers, the composite thin film has good strength and flexibility, square resistance is between 0.001 ohm per square and 3000 ohms per square, and electrical conductivity is between 0.01 siemens per centimeter to 5000 siemens per centimeter. The graphene/nanowire composite thin film which is obtained with the adoption of the preparation method has good strength, flexibility, and electrical conductivity, and is controllable in thickness, cuttable in shape, simple in preparing process, easy to operate, low in manufacturing cost, and suitable for solar batteries, energy storage, heat dissipation, catalysis, sensing, and conductive composite material fields.
Owner:SHANGHAI INST OF CERAMIC CHEM & TECH CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products