Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

638 results about "Gas expansion" patented technology

Gas expansion. In reservoir systems with little or no water drive, gas expansion often provides the energy necessary to move hydrocarbons to the wellbore. Free gas in a gas reservoir or in the gas cap of an oil reservoir expands to replace produced hydrocarbons.

Integrated fuel cell hybrid power plant with controlled oxidant flow for combustion of spent fuel

InactiveUS20050079395A1Reduction of fuelReduction of carbon monoxide emissionFuel cells groupingFuel cell auxillariesElectric forceRecuperator
A hybrid power generation system for generating electrical power comprises a compressor for producing a compressed oxidant and a recuperator in flow communication with the compressor. The hybrid power generation system further comprises a fuel cell assembly comprising a plurality of fuel cells in flow communication with the recuperator to provide the compressed oxidant for the fuel cell assembly. The fuel cell assembly further comprises a cathode inlet for receiving the compressed oxidant, an anode inlet for receiving a fuel stream, an anode outlet in flow communication with an anode exhaust stream and a cathode outlet in flow communication with a cathode exhaust stream, wherein at least a portion of the fuel reacts with the oxidant to produce electrical power. The hybrid power generation system further comprises a tail gas burner in flow communication with the anode outlet and the cathode outlet. The tail gas burner is configured for combusting a mixture of at least a portion of the anode exhaust stream and at least a portion of the cathode exhaust stream and producing a hot compressed gas. A control system is used for controlling the amount of the cathode exhaust stream introduced in the tail gas burner for stable combustion and reduction of fuel and carbon monoxide emission. The hot compressed gas from the tail gas burner is introduced to a turbine, where the hot compressed gas is expanded, thereby producing electrical power and an expanded gas.
Owner:GENERAL ELECTRIC CO

Air cannon and associated launch canister for a line-fouling system

FIG. 7 shows an air cannon system loaded with a launch canister containing a prop-fouler. A pressure vessel (28) contains an inlet including a poppet valve (100) that, upon command, can be selectively placed in either a one-way flow position to permit charging of the pressure vessel or otherwise opened to trigger rapid discharge through pressure equalization with the ambient environment. The air cannon may include multiple splayed barrels or a single barrel (158). A launch canister (202), realized in the form of a tube, has a driving plate (350) that closes an end of the launch tube. The driving plate is the first point loaded into the barrel. Within the launch canister (202) a first portion of a floating prop-fouling line is stored. The prop-fouling line, such as made from Dyneema®, has at its ends two drogues that, upon entry into the water, fill with water to produce drag resistance to movement of the prop-fouling line. To avoid undue stress on canopy panels of each drogue and to avoid twisting of shroud lines (312) to the canopy, a rotating shackle (310a, 310b) acts as a coupling point between the shroud lines (312) and the prop-fouling line. Only one drogue (306), its associated coupling and a selected length prop-fouling line are loaded into the launch canister, with the other drogue and its rotating shackle (310b) loaded into a cradle (166). Upon firing, gas expansion causes the rapid acceleration and ejection of the launch tube (202) and generally straight line deployment of the prop-fouling line (302).
Owner:BCB INT

Thermodynamic systems operating with near-isothermal compression and expansion cycles

A thermodynamic system that can approximate the Ericsson or Brayton cycles and operated in reverse or forward modes to implement a cooler or engine, respectively. The thermodynamic system includes a device for compressing a first fluid stream containing a first gas-liquid mixture having a sufficient liquid content so that compression of the gas within the first gas-liquid mixture by the compressing device is nearly isothermal, and a device for expanding a second fluid stream containing a second gas-liquid mixture having a sufficient liquid content so that expansion of the gas within the second gas-liquid mixture by the expanding device is nearly isothermal. A heat sink is in thermal communication with at least the liquid of the first gas-liquid mixture for transferring heat therefrom, and a heat source is in thermal communication with at least the liquid of the second gas-liquid mixture for transferring heat thereto. A device is provided for transferring heat between at least the gas of the first gas-liquid mixture after the first fluid stream exits the compressing device and at least the gas of the second gas-liquid mixture after the second fluid stream exits the expanding device. The compressing and expanding devices are not liquid-ring compressors or expanders, but instead are devices that tolerate liquid flooding, such as scroll-type compressors and expanders.
Owner:PURDUE RES FOUND INC

Process and device for generating power by pressure energy of small natural gas pipeline network

InactiveCN103422899ALeak will notSolve the problem that cannot be explosion-proofSealing arrangements for enginesMachines/enginesGas cylinderPower user
The invention discloses a process and a device for generating power by pressure energy of a small natural gas pipeline network. A high-pressure pipeline network of the device is connected with a gas inlet of an expansion machine through a pipeline; a gas outlet of the expansion machine is connected with a gas inlet of a temperature balancer through a pipeline; an outlet of the temperature balancer is connected with a low and medium-pressure gas pipeline network through a pipeline; a main shaft of the expansion machine is connected with a gearbox; the gearbox is connected with a power generator; the power generator is connected with a transformer synchronizer; the expansion machine adopts an improved AT15-65 type gas expansion machine; one end of the main shaft is connected with an air cylinder in a totally-closed way; a first seal ring and a second seal ring, which have sealing effects, are arranged between the other end of the main shaft and a wheel drum; a flow guide pipe is arranged in a closed cavity between the two seal rings; the flow guide pipe is connected with an inert gas bottle. The device can be used for continuously and stably providing a 220 V / 380 V stable power supply for an interruptible and closed 1-5 kW low-power user.
Owner:SOUTH CHINA UNIV OF TECH +1

Gas expansion natural gas pressurized liquefying technique with function of condensing and removing carbon dioxide (CO2)

The invention relates to a gas expansion natural gas pressurized liquefying technique with a function of condensing and removing carbon dioxide (CO2), which comprises the steps of: precooling natural gas at a gaseous state in a precooler, continuously cooling the natural gas in a crystallizing device, condensing and separating solid dry ice while lowering the content of the CO2 to 0.5 percent, then pressurizing the natural gas in a low-temperature compressor, then introducing the natural gas in a liquefying device and liquefying the natural gas under higher pressure and then introducing the liquefied natural gas into a storage tank for storing. The cold capacity needed by the liquefying process is supplied by an independent gas expansion refrigeration circulation. Compared with the prior art, the gas expansion natural gas pressurized liquefying technique has the advantages that: a CO2 pretreatment device occupying a large floor area in the conventional natural gas liquefying process can be saved, so that the investment cost for liquefying the natural gas on an offshore platform in high price can be greatly reduced. Meanwhile, the energy loss of the refrigeration circulation can be reduced when the natural gas is liquefied at a higher temperature.
Owner:SHANGHAI JIAO TONG UNIV

Slotting induced-flow pressure-relief anti-reflection method for complicated seam

A slotting induced-flow pressure-relief anti-reflection method for a complicated seam is suitable for gas control of high-gas high-ground-stress complicated seam regions, can improve the gas permeability and gas desorption rate of coal, solves the difficult problems of low exhausting and mining efficiencies of coal-bed gas, high drilling construction load and the like, and realizes efficient gas exhausting and mining as well as fast outburst elimination of the complicated seam. High-pressure water is jetted into drilled holes to cut and destroy the coal in a rotary manner, and the coal in the radial direction of the drilled holes is destroyed and disturbed, so that buckling failures of the coal are induced and the coal and the gas are enabled to be spouted out of the drilled holes, as a result, the gas expansion energy of the coal is released, coal cracks are expanded and the exposure surface area of the coal is increased. therefore, the gas exhausting and mining efficiencies of coal are improved, coal and gas burst risks are eliminated, the effective influence range of drilling gas exhausting and mining is improved by 1-3 times, the air permeability coefficient of coal around the drilled holes is improved by 100-200 times, the drilling methane gas exhausting and mining quantity is improved by 2-5 times within hundreds of meters, and the outburst elimination time of the coal bed is shortened by 30-50 percent. The slotting induced-flow pressure-relief anti-reflection method for the complicated seam has very good field application value and social benefits.
Owner:CHINA UNIV OF MINING & TECH

Apparatus for measuring volume by built-in method

The invention relates to a device for measuring volume via inlay method, for measuring the volumes of static expansion method vacuum containers and the container demanding accurate measurement, and especially the volumes of irregular container. The device is composed of a gas supply system, a standard volume, a small container of unknown volume, a large container of unknown volume, a vacuum gauge, a block valve and a gas exhaust system, wherein the gas supply system is connected with the small container of unknown volume for supplying gas to the small container; the standard volume is put in or taken out via a flange on the small container; the pressure in the small container is measured by the vacuum gauge; the pressure in the large container is measured by the vacuum gauge; and the gas exhaust system is connected with the large container for exhausting gas from the large container. The invention utilizes a standard volume rod which is measured accurately as a reference volume, to be arranged into a container of unknown volume, utilizes gas expansion method and refers to pohl law to calculate the volume of the unknown container accurately. The method is suitable for measuring the volumes of irregular containers and can improve volume measurement accuracy significantly.
Owner:NO 510 INST THE FIFTH RES INST OFCHINA AEROSPAE SCI & TECH

Polypropylene tail gas recovery device and recovery method

The invention discloses a polypropylene tail gas recovery device. The polypropylene tail gas recovery device comprises a compression unit, a drying unit, a membrane separation unit and a cryogenic separation unit, wherein the compression unit, the drying unit, the membrane separation unit and the cryogenic separation unit are connected in sequence. The compression unit comprises at least one compressor, a heat exchanger and a gas and liquid separator, wherein the compressors, the heat exchanger and the gas and liquid separator are connected in sequence. The drying unit comprises at least two adsorption towers which are connected in sequence, and drying agents are placed in the adsorption towers. The membrane separation unit comprises a membrane separator. The cryogenic separation unit comprises at least one high-efficiency multi-channel heat exchanger, at least one low-temperature gas and liquid separator, at least one gas expansion device and at least one liquid expansion device. According to a polypropylene tail gas recovery method adopting expansion refrigeration, propylene in polypropylene tail gas is liquefied to be recovered, and meanwhile nitrogen is purified to meet the requirement for nitrogen recycling; in combination with a membrane separation technology, hydrogen in the polypropylene tail gas is removed; the recovery rate of the propylene in the polypropylene tail gas reaches above 98%.
Owner:DALIAN EUROFILM IND
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products