Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

13565results about "Servomotors" patented technology

Method and device for attenuating the motion of hydraulic cylinders of mobile work machinery

The present invention relates to a method for attenuating the motion of hydraulic cylinders of mobile work machinery, in particular of hydraulic excavators, in which prior to the hydraulic cylinder reaching one of the limits of travel, its motion speed is reduced, and the hydraulic cylinder is moved to the respective limit of travel at reduced speed; wherein for the purpose of reducing the speed, the inflow to, and/or the outflow from, the hydraulic cylinder are/is throttled by a flow control device. According to the invention, the method is characterized by, prior to the respective limit of travel being reached, the motion speed of the hydraulic cylinder is registered, and the point in time when throttling commences is changed depending on the registered motion speed. Furthermore, the present invention relates to a device for attenuating the motion of hydraulic cylinders of mobile work machinery, in particular of hydraulic excavators, a position registering device for registering a preliminary limit position of the hydraulic cylinder, a control device for throttling the inflow and/or outflow of the hydraulic cylinder, and a control device for controlling the flow control device when the preliminary limit position is reached. According the invention, the device has a speed registering device for registering the motion speed of the hydraulic cylinder when the preliminary limit position is reached, and the control device has a delay device for delaying driving the flow control device, depending on the recorded motion speed.
Owner:LIEBHERR FRANCE

Vehicle system to recapture kinetic energy

A fluid drive system that can be used to drive a vehicle and has energy regeneration and storage capabilities. The fluid drive system includes an electrical energy supply source mounted on the vehicle, at least one electrical motor electrically connected to the electrical supply source, and a hydraulic pump driven that may be of the variable displacement type by the electrical motor. The fluid drive system may also include a low pressure hydraulic fluid supply tank supplying fluid to the hydraulic pump, at least one pneumatically charged accumulator tank for storing pressurized hydraulic fluid, a combination hydraulic motor and pump that may also be of the variable displacement type being alternately driven by the hydraulic pump and the pneumatically charged accumulator tank; and an electrical regeneration system for regenerating the electrical energy supply. The electrical regeneration system may be powered by hydraulic fluid from the combination electrical motor and pump. The combination hydraulic motor and pump propels the vehicle during acceleration and speed maintaining operations and may also serves as a braking mechanism during deceleration of the vehicle. The combination hydraulic motor and pump may also pump hydraulic fluid into the pneumatically charged accumulator tank during at least a portion of the time that the vehicle is decelerating. The combination hydraulic motor and pump may further pump hydraulic fluid for powering the electrical regeneration system when the pneumatically charged accumulator tank is fully pressurized. The electrical regeneration system also has the ability to recharge the electrical energy supply while the vehicle is stopped using stored recovered kinetic energy.
Owner:PARKER I L L C +1

Induced symbiotic osmosis [iso] for salinity power generation

A method and apparatus for renewable power generation utilizes the chemical potential dissimilarity between solutions of differing ionic formulations. A train is formed by a sequentially ordered set of a plurality of cells in which each successive cell is related to the preceding cell. Each cell has pumping means and hydro-power generation turbine means to form a closed hydraulic loop configured for specified volumetric and flow capacity. Adjacent cells share semipermeable membranes. Each cell is charged with a brine of specified ionizable inorganic salt quantity and type with the brine being cycled in a controlled concentration-pressure loop, with each of the cells operating at progressively increasing concentration and osmotic pressure ratio. A continuous and constant flow rate of substantially salt-free permeate flux is maintained across each cell, the flux being osmotically induced from low salt concentration water being fed at the first cell in the train and exiting at the last cell along with the discarded high concentration water brine. The salt-free permeate flux is continuously induced, in symbiotic mode, through the shared membranes, driven by the chemical influence of concentration potential field bounded by water of low to no salt concentration on one end of the train and by brine of high salt concentration on the other end of the train with sufficient concentration difference to provide driving force for said plurality of cells, while maintaining adequate concentration difference between adjacent cells to enhance osmosis function, as well as defining a concentration ratio within each cell to ensure a net positive power generation.
Owner:KELADA MAHER ISAAC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products