Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1941results about "Accumulator installations" patented technology

Systems and methods for energy storage and recovery using compressed gas

The invention relates to methods and systems for the storage and recovery of energy using open-air hydraulic-pneumatic accumulator and intensifier arrangements that combine at least one accumulator and at least one intensifier in communication with a high-pressure gas storage reservoir on a gas-side of the circuits and a combination fluid motor / pump, coupled to a combination electric generator / motor on the fluid side of the circuits.
Owner:SUSTAINX

Systems and Methods for Energy Storage and Recovery Using Compressed Gas

The invention relates to methods and systems for the storage and recovery of energy using open-air hydraulic-pneumatic accumulator and intensifier arrangements that combine at least one accumulator and at least one intensifier in communication with a high-pressure gas storage reservoir on a gas-side of the circuits and a combination fluid motor / pump, coupled to a combination electric generator / motor on the fluid side of the circuits.
Owner:SUSTAINX

Thin wall, high pressure, volume compensator

Accumulators / compensators for pressurized fluent material systems are provided, in which a continuous substantially non-permeable, flexible membrane (like a bellows) surrounds or is surrounded by a non-gaseous support medium, all within a surrounding housing. Various combinations of support media, which may include internal gas-filled cavities, are described and illustrated.
Owner:SENIOR ENG INVESTMENTS

Hybrid machine with hydraulic drive device

A hybrid machine with a hydraulic drive device having hydraulic actuators allowed to operate against and by external loads is provided. To this end, the hybrid machine comprises hydraulic cylinders (7), first hydraulic pumps (P1) connected, with closed circuits, to head side pressure receiving chambers (7S) and bottom side pressure receiving chambers (7L) of the hydraulic cylinders (7), and second hydraulic pumps (P2) connected, with open circuits, to the bottom side pressure receiving chambers (7L) and an external oil chamber (10), wherein the first and second hydraulic pumps (P1, P2) are connected to electric motors (M) so as to be driven.
Owner:KOMATSU LTD

Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange

A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the ā€œpressure cellā€) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
Owner:LIGHTSAIL ENERGY

Energy recovery system of hybrid power engineering machinery energy accumulator-hydraulic motor

The invention discloses a hybrid power engineering mechanical accumulator-hydraulic motor energy recovery system. The system mainly comprises an engine, a variable pump, variable frequency motors, a variable motor, a signal control unit, an accumulator and a hydraulic implementation element, and the like. In the system, the variable motor is coaxially connected with a variable frequency motor M2 and forms a composite energy recovery system with the accumulator so as to recover the gravitational potential energy and braking energy in the lowering process of an implementation mechanism. The variable pump, the engine and a variable frequency motor M1 are coaxially connected; a hybrid power system which consists of the engine and the variable frequency motor M1 drives the hydraulic implementation mechanism to rise and lift heavy objects together with the accumulator. The system overcomes the defects that the variable motor-power generator energy recovery system responds slowly and the specific energy of the accumulator is low, enhances the dynamic response performance of the energy recovery system, improves the working conditions of power generation of an electric generator, and simultaneously can directly recover part of potential energy by the accumulator, thus raising the energy recovery efficiency of the system.
Owner:ZHEJIANG UNIV

Hydraulic accumulator health monitor

A system and method to diagnose the operational health of a hydraulic accumulator are provided. The system can include a hydraulic accumulator selectively coupled to a hydraulic actuator, such as a swing motor. The accumulator can be charged by movement of the actuator. A pressure sensor can be associated with the accumulator to determine an accumulator pressure. A controller can be connected to the pressure sensor. The controller can determine a charge curve based on a relationship between an actuator operational parameter associated with the actuator movement and the accumulator pressure. The controller can compare the charge curve to a previously defined charge curve or range to determine an error between the charge curve and the previously defined charge curve or range. The degree of the error can be associated with the operational health of the accumulator, and if too large, the operator may be notified of the status.
Owner:CATERPILLAR INC

Energy recovery system for work vehicle including hydraulic drive circuit and method of recovering energy

A work vehicle having a hydrostatic drive system provides for the recovery and reuse of the vehicle's kinetic energy by conducting pressurized hydraulic fluid out of the hydrostatic drive system into an accumulator during vehicle deceleration, and conducting the pressurized fluid back into the drive system during vehicle acceleration to assist the vehicle's engine in accelerating the vehicle.
Owner:BLUE LEAF I P +1

System for controlling a hydraulic actuator, and methods of using same

The present invention is directed to a system for controlling a hydraulic actuator, and various methods of using same. In one illustrative embodiment, the system comprises a first hydraulic cylinder, an isolated supply of fluid provided to the first hydraulic cylinder, the isolated supply of fluid positioned in an environment that is at a pressure other than atmospheric pressure, an actuator device coupled to the first hydraulic cylinder, the actuator device adapted to drive the first hydraulic cylinder to create the sufficient pressure in the fluid, and at least one hydraulic line operatively intermediate the first hydraulic cylinder and the hydraulic actuator, the hydraulic line supplying the sufficient pressure in the fluid to the hydraulic actuator in the remote locale.
Owner:FMC TECH INC

Hydraulic drive system and improved control valve assembly therefor

A control valve assembly (43) for use in a system in which a pump-motor unit (35) can either receive drive torque from a drive-line (17) or transmit torque thereto. The system includes a high pressure accumulator (41) and the control valve assembly is disposed between the pump-motor unit and the accumulator, and includes a mode valve (45) normally biased closed by pressure in a control cavity (89), the fluid pressure in which is controlled by a pilot valve assembly (49) in response to an electrical signal (133). A step-orifice valve (47) associated with the mode valve poppet member (79) provides a relatively larger orifice (115) into the control cavity (89) when pressure therein is high, and a relatively smaller orifice (119) into the control cavity when pressure therein is low, i.e., when the pilot valve assembly (49) is open. Thus, a large volume of flow can occur from the accumulator to the unit (35) in a motoring mode, with a relatively low pressure drop, while the poppet member is able to have softer, relatively longer opening time, but a relatively faster closing time.
Owner:EATON CORP

Systems and Methods for Improving Drivetrain Efficiency for Compressed Gas Energy Storage

Generally, the invention relates to power generation and energy storage. In particular, to systems and methods for providing constant power from hydraulic inputs having widely-varying pressures. More particularly, the invention relates to hydraulic-pneumatic energy storage and recovery systems that include either a fixed or variable displacement hydraulic motor and control systems that allow a user to maintain constant power from the fixed or variable displacement hydraulic motor.
Owner:SUSTAINX

Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange

A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the ā€œpressure cellā€) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
Owner:LIGHTSAIL ENERGY

Inline bladder-type accumulator for downhole applications

An accumulator comprises a housing connected to a hydraulic system, an elastomeric bladder separating a gas compartment from a fluid compartment, and an anti-extrusion device. A method for operating an accumulator comprises connecting the accumulator to a hydraulic system, injecting an inert gas into a gas compartment to a precharge pressure, moving an anti-extrusion device to prevent a bladder from extruding into the hydraulic system, running the accumulator and the hydraulic system downhole, moving the anti-extrusion device to allow fluid communication between the hydraulic system and a fluid compartment, generating pressure fluctuations within the hydraulic system, and expanding or contracting the bladder in response to the pressure fluctuations without moving the anti-extrusion device. A method of improving fluid hammer performance comprises connecting the fluid hammer to an accumulator that produces a greater delivered horsepower from the fluid hammer as compared to a baseline horsepower when operating without the accumulator.
Owner:SMITH INT INC

Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange

A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the ā€œpressure cellā€) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
Owner:LIGHTSAIL ENERGY

Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange

A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the ā€œpressure cellā€) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
Owner:LIGHTSAIL ENERGY

Hydraulic energy intensifier

Hydraulic circuits used to manipulate tools in, for example construction equipment, uses less power for a retraction of a hydraulic cylinder than for an extension of that cylinder. Provided is a hydraulic circuit that uses the stored energy from the low energy phase to lower the energy load on the hydraulic pump during the high energy phase. Energy from the hydraulic pump is increased during the low energy phase to increase the amount of stored hydraulic energy. The increased amount of stored energy is then used to intensify or add to the energy generated by the hydraulic pump for the high energy phase.
Owner:DEERE & CO

Cylinder with internal pushrod

A cylinder assembly is disclosed. The cylinder assembly may include a cylinder body having an internal cavity therein and a piston and rod assembly disposed for axial movement within the internal cavity of the cylinder body. The piston and rod assembly may have an axial passage extending therein. The cylinder assembly may further include a tubular element received within the axial passage of the piston and rod assembly. At least a portion of the tubular element may extend out of the axial passage and into the internal cavity of the cylinder body between the axial passage and a wall of the cylinder body.
Owner:CATERPILLAR INC

Accumulator

Disclosed is an accumulator comprising a cylindrical shell including a cylindrical portion, a partitioning member for partitioning the interior of the shell into a hydraulic chamber and a gas chamber, and a port including a hydraulic fluid flow path for communicating the exterior of the shell and the hydraulic chamber. The variation of the pressure of a hydraulic fluid flowing into the hydraulic chamber is accommodated by expansion and compression of a gas in the gas chamber according to expansion and contraction of the partitioning member. The port is approximately airtightly inserted into the cylindrical portion of the shell, and is welded to an outer circumference of the cylindrical portion by means of welding.
Owner:NHK SPRING CO LTD

Hydraulic drive system

A hydraulic drive system for an actuator uses a pair of pressure compensated hydraulic machines to control flow to and from the drive chambers of the actuator by varying the controlled pressure of one of the machines. The machines are mechanically coupled to permit energy recovery and charge an accumulator to store supplies energy. The drive system may be combined with other services including a transmission for incorporation in a vehicle. The transmission uses a pressure compensated supply and torque control of the wheels.
Owner:CONCENTRIC ROCKFORD

Dialysis system having integrated pneumatic manifold

A dialysis machine valve manifold assembly includes a plurality of pneumatic valves; a plate including a first side and a second side, the plurality of pneumatic valves mounted to the first side of the plate, the second side of the plate defining a plurality of pneumatic flow paths; and a port header mounted removably to the plate, the port header including a plurality of ports configured to connect sealingly to pneumatic tubing, the ports in fluid communication with the pneumatic valves via the pneumatic flow paths defined in the plate.
Owner:BAXTER HEALTHCARE SA +1

Depth compensated subsea passive heave compensator

ActiveUS7934561B2Mitigate/eliminate the depth effectEliminate the effects ofDrilling rodsDerricks/mastsEngineeringPiston rod
A depth compensated passive eave compensator comprises a first cylinder connected at its upper end to a vessel. A piston rod extends from a piston located within the first cylinder through the lower end thereof and is connected to subsea equipment. A second cylinder contains a compressed gas which maintains pressure beneath the piston of the first cylinder. The upper end of the first cylinder is connected to the upper end of a third cylinder having a piston mounted therein. A piston rod extending from the piston of third cylinder extends through the lower end thereof thereby applying the pressure of the sea to the piston of the third cylinder.
Owner:INTERMOOR

Hydraulic energy intensifier

Hydraulic circuits used to manipulate tools in, for example construction equipment, uses less power for a retraction of a hydraulic cylinder than for an extension of that cylinder. Provided is a hydraulic circuit that uses the stored energy from the low energy phase to lower the energy load on the hydraulic pump during the high energy phase. Energy from the hydraulic pump is increased during the low energy phase to increase the amount of stored hydraulic energy. The increased amount of stored energy is then used to intensify or add to the energy generated by the hydraulic pump for the high energy phase.
Owner:DEERE & CO

Apparatus and method for using a lightweight portable air/gas power supply

ActiveUS6932128B2Easily and quickly refilledHigh pressure levelTravelling sacksLiquid fillingFiberMulti-valve
A lightweight carbon fiber air / gas supply vessel storing high pressure air / gas. The air / gas supply vessel output is controlled by an adjustable pressure reduction valve which varies output pressure from very high to low pressure levels. An alternative multi-valve system uses a first pressure reduction valve to reduce output pressure from the very high levels in the air / gas supply vessel to an intermediate pressure level, and a second pressure reduction valve that reduces the air / gas pressure from the intermediate level to a fine tunable low pressure level. In both embodiments, the output of the last pressure reduction valve used is connected to a high pressure cable which in turn uses a standard universal fitting which can be coupled to most pneumatically powered equipment. Additional high pressure reservoir vessels can be used to replenish the lightweight air / gas supply vessel when its supply of air / gas is depleted.
Owner:SPEED AIR SYST

Apparatus and method for dual mode compact hydraulic system

A dual mode hydraulic actuator, comprising: a housing; a rod secured to a piston, the rod and piston being slidably received within the housing; a first chamber positioned on one side of the piston; a second chamber positioned on another side of the piston; a sealed reservoir; a fluid disposed in the first chamber, the second chamber and the reservoir; a bidirectional pump for moving the fluid between the first chamber, the second chamber and the sealed reservoir; a bi-mode control valve for providing selective fluid communication between the first chamber, the second chamber and the sealed reservoir, wherein the bi-mode control valve is spring biased into a neutral position wherein fluid communication between the first chamber, the second chamber and the sealed reservoir is prevented; and wherein the bi-mode control valve is capable of being manually manipulated into a manual mode position wherein fluid flow from the first chamber to the second chamber is provided and fluid flow from or to the sealed reservoir is also provided, the fluid flow from or to the sealed reservoir being dependant upon a volume of fluid in the first chamber and the second chamber.
Owner:STRATTEC POWER ACCESS

System for controlling a hydraulic actuator, and methods of using same

The present invention is directed to a system for controlling a hydraulic actuator, and various methods of using same. In one illustrative embodiment, the system comprises a first hydraulic cylinder, an isolated supply of fluid provided to the first hydraulic cylinder, the isolated supply of fluid positioned in an environment that is at a pressure other than atmospheric pressure, an actuator device coupled to the first hydraulic cylinder, the actuator device adapted to drive the first hydraulic cylinder to create the sufficient pressure in the fluid, and at least one hydraulic line operatively intermediate the first hydraulic cylinder and the hydraulic actuator, the hydraulic line supplying the sufficient pressure in the fluid to the hydraulic actuator in the remote locale.
Owner:FMC TECH INC

Compact hydraulic actuator system

A hydraulic actuator, comprising: a housing; a rod secured to a piston, the rod and piston being slidably received within the housing, wherein the rod along with the piston is capable of movement between a first position and a second position; a first chamber positioned on one side of the piston and within the housing; a second chamber positioned on another side of the piston and within the housing; a self contained flexible volume compensator disposed within the housing; a fluid disposed in the first chamber, the second chamber and the self contained flexible volume compensator, wherein the fluid in the self contained flexible volume compensator is pressurized to a predetermined pressure level; a bidirectional pump for moving the fluid between the first chamber, the second chamber and the self contained flexible volume compensator; a valve system disposed in the housing and for providing selective fluid communication between the first chamber, the second chamber and the self contained flexible volume compensator as the rod moves in a range of movement defined by the first position and the second position, wherein the valve system isolates the first chamber from the self contained flexible volume compensator and the second chamber when a fluid pressure in at least one of the first chamber, the second chamber and the self contained flexible volume compensator is below a predetermined level; and wherein the pressurized fluid in the self contained flexible volume compensator is transferred from the self contained flexible volume compensator to the second chamber via the pump and fluid in the first chamber is transferred to pump from the first chamber when the rod is moved toward the second position and wherein fluid in the second chamber is transferred from second chamber to the self contained flexible volume compensator and the first chamber when the rod and piston are moved towards the first position.
Owner:STRATTEC POWER ACCESS

Hydrostatic regenerative drive system

A variable transmission comprises a first fluid working machine (1) for connection to a prime mover (2), a second fluid working machine (5) for connection to a mechanical load (6) and a fluid system linking the first and second working machines, the fluid system having a high-pressure side (3) and a low-pressure side (4) each connected to both said first and said second fluid working machines (1, 5), a fluid accumulator (7) on the high-pressure side, a means to admit fluid from the reservoir to the low-pressure side and a pressure control valve to maintain the correct pressure in the low-pressure side, wherein the second fluid working machine (5) includes chambers of variable volume having electronically controllable valves such that each of said chambers has pumping, motoring and idling modes of operation, and the second fluid working machine (5) is operable to both source fluid to and sink fluid from each of said high-pressure side (3) and said low-pressure side (4).
Owner:ARTEMIS INTELLIGENT POWER
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products