Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

983 results about "Mechanical load" patented technology

Load, in mechanics, is the external mechanical resistance against which a machine, such as a motor or engine, acts. The load can often be expressed as a curve of force versus speed.

Model prediction control method and model prediction control system for all working conditions of wind generating set

Disclosed are a model prediction control method and a model prediction control system for all working conditions of a wind generating set. The system comprises an MPC (model prediction control) device, a feedback information measurer, a wind wheel, a driving chain, a tower, a generating unit, a variable propeller driver and a converter. The feedback information measurer is used for detecting status variables of the wind wheel, the driving chain, the tower and the generating unit and transmitting detecting results to the MPC device, the MPC device is used for computing targets of the blade pitch angle and the generator torque, and the variable propeller driver and the converter are used for adjusting the blade pitch angle and the wind generator torque. The method is used for computing control increment by means of a variable propeller control prediction model and a torque control prediction model, takes the status variables including driving chain torsional displacement, driving chain torsional speed, blade plane external first-order flap displacement, blade plane external first-order flap speed, tower front-back first-order swing displacement, tower front-back first-order swing speed, mechanical loads of the unit and the like, and two prediction models can be automatically switched in different working conditions, so that the wind generating set can be operated in all working conditions.
Owner:SHENYANG HUAREN WIND POWER TECH

Captured synchronous DRAM fails in a working environment

A Synchronous DRAM memory test assembly that converts a normal PC or Workstation with a synchronous bus into a memory tester. The test assembly may be split into two segments: a diagnostic card and an adapter card to limit mechanical load on the system socket as well as permit varying form factors. This test assembly architecture supports memory bus speeds of 66 MHz and above, and provides easy access for a logic analyzer. The test assembly supports Registered and Unbuffered Synchronous DRAM products. The test assembly permits good and questionable synchronous modules to be compared using an external logic analyzer. It permits resolution of in-system fails that occur uniquely in system environments and may be otherwise difficult or impossible to replicate. The test assembly re-drives the system clocks with a phase lock loop (PLL) buffer to a memory module socket on the test assembly to permit timing adjustments to minimize the degradation to the system's memory bus timings due to the additional wire length and loading. The test assembly is programmable to adjust to varying bus timings such as: CAS (column address strobe) Latencies and Burst Length variations. It is designed with Field Programmable Gate Arrays (FPGAs) to allow for changes internally without modifying the test assembly.
Owner:GLOBALFOUNDRIES INC

Electrochemical fuel cell comprised of a series of conductive compression gaskets and method of manufacture

A novel electrochemical fuel cell comprising at least one fuel cell assembly comprising a Membrane Electrode Assembly (MEA) interposed between an anode separator and a cathode separator. The Membrane Electrode Assembly comprises a solid polymer electrolyte or Proton Exchange Membrane (PEM) interposed between an anode and a cathode, each electrode comprising electrocatalyst. The anode separator contains the fuel flow field distribution features necessary to communicate the fuel to said anode. The cathode separator contains the oxidant flow field distribution features necessary to communicate the oxidant to said cathode. In addition, a Heat Transfer (HT) separator may be integrated into said fuel cell assembly. The Heat Transfer separator contains the flow field distribution features necessary to communicate Heat Transfer Fluid (HTF) through a Heat Transfer Zone (HTZ) in said fuel cell assembly in order to control the thermal conditions of the fuel cell assembly and stack. Each of the said anode, cathode and Heat Transfer separators are made up of a respective series of multiple conductive compression gaskets possessing inter-related fluid distribution channel and manifold features that form intra-communicating systems for the distribution of fuel, oxidant and Heat Transfer Fluid throughout the fuel cell separator and stack. Under sufficient mechanical load, the respective series of multiple compression gaskets are consolidated into fuel cell separators that demonstrate sufficient structural integrity to contain the PEMFC fluids under substantial pressure; that demonstrate sufficient electrical and thermal conductivity to enable the operation of a high-performing Proton Exchange Membrane Fuel Cell; that demonstrate sufficient material obduracy to bear the compressive load necessary to seal the fuel cell assembly and fuel cell stack; and that demonstrate sufficient fluid impermeability in order prevent fluid migration through the gasket material. Within the consolidated fuel cell separators, the inter-related channel and manifold features form an intra-communicating system for the distribution of fuel, oxidant and Heat Transfer Fluid throughout the fuel cell assembly and fuel cell stack. In addition, the present invention includes methods of manufacturing said electrochemical fuel cell.
Owner:TETROS INNOVATIONS LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products