Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

34 results about "Semimetal" patented technology

A semimetal is a material with a very small overlap between the bottom of the conduction band and the top of the valence band. According to electronic band theory, solids can be classified as insulators, semiconductors, semimetals, or metals. In insulators and semiconductors the filled valence band is separated from an empty conduction band by a band gap. For insulators, the magnitude of the band gap is larger (e.g. > 4 eV) than that of a semiconductor (e.g. < 4 eV). Because of the slight overlap between the conduction and valence bands, semimetal has no band gap and a negligible density of states at the Fermi level. A metal, by contrast, has an appreciable density of states at the Fermi level because the conduction band is partially filled.

Nano coating of negative electrode materials and preparation method of secondary aluminium cell using negative electrode materials

The invention discloses a novel high-energy secondary aluminium cell and a preparation method. The aim is to provide a method for preparing nano material-coated negative electrode active materials, by coating the negative electrode active materials with the nano materials, it is possible to subject the negative electrode active materials to nano treatment; therefore, the high-energy secondary aluminium cell features obviously improved properties, simple material composition, low cost, simple technology, environmentally friendly synthesis path, relatively high charge-discharge capacity and relatively good cycle property and market prospect. The aluminium cell comprises the positive and negative electrodes in the modified positive and negative electrode active materials coated by the nano material surfaces or any one electrode in the singly coated positive or negative electrode active materials, polyelectrolyte (ionic liquid) and a diaphragm. The coating materials are semimetals, oxides, salts or conductive polymers. The invention uses the nano materials in the secondary aluminium cell for the first time; therefore, the cell has higher open circuit voltage and reversible capacity and better cycle property, can be applied to such fields as portable power sources like mobile telephones, notebooks and portable electronic components, and as electric vehicles, hybrid electric vehicles and the like, and has broad application and development prospects.
Owner:无锡欧力达新能源电力科技有限公司

A carbon nanotube three-dimensional fin transistor and its preparation method

The present application discloses a carbon nanotube three-dimensional fin transistor and a preparation method thereof, wherein the carbon nanotube three-dimensional fin transistor is a kind of Dirac two-dimensional semi-metal source and drain based on an embedded gate fin Transistor structure, the carbon nanotube three-dimensional fin transistor with this structure can reduce the short channel effect of the carbon nanotube three-dimensional fin transistor while having a small size, because the Dirac two-dimensional semi-metal has a two-dimensional The ultra-thin structure, using it as the source and drain materials of the carbon nanotube three-dimensional fin transistor can reduce the electrostatic shielding effect of the source and drain on the gate electrode in the gate structure, thereby reducing the short-circuit of the carbon nanotube three-dimensional fin transistor. channeling effect. In addition, the carbon nanotube three-dimensional fin transistor can affect the potential distribution in the channel by applying a voltage on the embedded metal gate fin, thereby realizing discrete adjustment and control of the device threshold and realizing the function of dynamically controlling the device threshold.
Owner:PEKING UNIV +2

Carbon nanotube three-dimensional fin transistor and preparation method thereof

The invention discloses a carbon nanotube three-dimensional fin transistor and a preparation method thereof. The carbon nanotube three-dimensional fin transistor is a transistor structure based on anembedded gate fin with Dirac two-dimensional semimetal as source and drain electrodes. The short channel effect of the carbon nanotube three-dimensional fin transistor can be reduced while the fin transistor has a small size, since the Dirac two-dimensional semimetal has a two-dimensional ultra-thin structure, the electrostatic shielding effect of the source and drain electrodes for a gate electrode in the gate structure can be reduced when the Dirac two-dimensional semimetal is used as source and drain electrode materials of the carbon nanotube three-dimensional fin transistor, and therefore,the short channel effect of the carbon nanotube three-dimensional fin transistor can be reduced. In addition, according to the carbon nanotube three-dimensional fin transistor, the potential distribution in a channel can be affected by applying a voltage to an embedded metal gate fin, therefore, the discrete regulation of a device threshold can be achieved, and the function of dynamically controlling the threshold of the device is achieved.
Owner:PEKING UNIV +2

Composite material, quantum dot light emitting diode and preparation method of quantum dot light emitting diode

The invention discloses a composite material, a quantum dot light-emitting diode and a preparation method of the quantum dot light-emitting diode. The composite material comprises metal oxide nanoparticles and MN4 type semimetal, the metal oxide nanoparticles and the MN4 type semimetal are combined, and M in the MN4 type semimetal is a metal atom with the outermost layer being a 3d electron orbit. After the MN4 type semimetal and the metal oxide nanoparticles are compounded, the metal oxide nanoparticles can be uniformly dispersed by utilizing the characteristic that surface metal atoms in the semimetal are easily coordinated with hydroxyl ligands on the surfaces of the metal oxide nanoparticles. The MN4 type semimetal has high conductivity, and the conductivity of the MN4 type semimetal can be improved by compounding the MN4 type semimetal with the metal oxide nanoparticles. The band gap of the MN4 type semimetal is relatively small, so that electrons of the composite material combined with the metal oxide nanoparticles are more easily excited from a valence band to a conduction band, the carrier concentration is increased, carrier transmission is facilitated, and the luminous efficiency of the device is improved.
Owner:TCL CORPORATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products