Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1469 results about "Curie temperature" patented technology

In physics and materials science, the Curie temperature (TC), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie temperature is named after Pierre Curie, who showed that magnetism was lost at a critical temperature.

Temperature limited heaters with high power factors

Certain embodiments provide a heater. The heater includes a ferromagnetic member. The heater also includes an electrical conductor electrically coupled to the ferromagnetic member. The electrical conductor is configured to conduct a majority of time-varying electrical current passing through the heater at about 25° C. The heater is configured to provide a first heat output below the Curie temperature of the ferromagnetic member. The heater is configured to automatically provide a second heat output approximately at and above the Curie temperature of the ferromagnetic member. The second heat output is reduced compared to the first heat output.
Owner:SHELL OIL CO

Techniques for ultrahigh density writing with a probe on erasable magnetic media

Techniques for ultrahigh density writing on an erasable magnetic medium include using a micromachined mechanism having two probes for writing to the medium. Use of the two probe embodiment eliminates the need to change the magnetic orientation of the probe. In another embodiment, a single probe is provided which is heated to the vicinity of its Curie temperature to enable the magnetic orientation of the probe to be switched. The probe may be heated to its Curie temperature through the use of a heating element or a focused laser. In another embodiment of the present invention, either the magnetic orientation of the probe or the magnetic orientation of the medium may be switched through the combination of a static magnetic field, a radio frequency magnetic field and, under certain circumstances, the magnetic field of the probe. In all cases, the writing techniques enable information to be written to a magnetic medium in a manner which enables the information to be erased and the medium rewritten.
Owner:CARNEGIE MELLON UNIV

Magnetic particle composition for therapeutic hyperthermia

Magnetic nanoparticle compositions are provided which provide an inherent temperature regulator for use in magnetic heating, particularly for use in magnetic hyperthermia medical treatments. The composition includes magnetic nanoparticles having a Curie temperature of between 40 and 46° C., preferably about 42° C., and may further include a polymeric material and optionally a drug or radiosensitizing agent. Methods of hyperthermia treatment of a patient in need thereof are provided which include the steps of administering to the patient a composition comprising magnetic nanoparticles having a Curie temperature of between 40 and 46° C.; and exposing the magnetic nanoparticles in the patient to an alternating magnetic field effective to generate hysteresis heat in the nanoparticles.
Owner:FLORIDA STATE UNIV RES FOUND INC

System method and apparatus for localized heating of tissue

System method and apparatus for accurately carrying out the in situ heating of a targeted tissue. Small implants are employed with the targeted tissue which exhibit an abrupt change of magnetic permeability at an elected Curie temperature. The permeability state of the implant is monitored utilizing a magnetometer. The implants may be formed as a setpoint temperature determining component combined with a non-magnetic heater component to enhance the tissue heating control of the system. With the system, a very accurate quantum of heat energy can be supplied to a neoplastic lesion or tissue carrying infectious disease so as to maximize the induction of heat shock proteins. The system also may be utilized in conjunction with non-magnetic arterially implanted stents for the hyperthermia therapy treatment of restenosis and in conjunction with the mending of boney tissue.
Owner:APSARA MEDICAL

Thermally assisted magnetic recording disk with ion-implant facilitated non-magnetic regions, manufacturing method thereof, and magnetic recording method

The invention provides a magnetic disk that solves (1) a problem of cross-talk that cannot be solved even by an existing thermally assisted recording method or a discrete method (DTM or the like), (2) a problem of surface flatness, which an existing embedding type DTM or the like has, and (3) a problem of a difference in thermal expansion coefficient between materials when a thermally assisted method is applied to the DTM, and that (4) does not necessitate a special medium structure, and is excellent in a surface flatness and economically and functionally high in realizability. A DTM manufactured by ion implantation is excellent in the surface flatness, and can solve the cross-talk problem by conducting the thermally assisted recording at a temperature between a Curie temperature (Tcn) of a portion where ions are implanted (non-recording region) and a Curie temperature (Tcr) of a portion where ions are not implanted (recording region).
Owner:WESTERN DIGITAL TECH INC

Variable heat pump using magneto caloric materials

A heat pump system is provided that uses multiple stages of MCMs with different Curie temperature ranges. An adjustable fluid flow path is used whereby the number of stages through which a heat transfer fluid passes can be varied depending upon e.g., the amount of heating or cooling desired. In certain embodiments, a magnetic field used to activate the MCMs can be manipulated so that the number of stages of MCMs that are activated also be adjusted. These and other features can improve the operating efficiency of the heat pump.
Owner:HAIER US APPLIANCE SOLUTIONS INC

Magnetic element temperature sensors

Small, low-cost wireless temperature sensors (26,64,96) are provided for sensing the temperature of an object (44). The temperature sensors (26,64,96) preferably include a plurality of individual, magnetically susceptible temperature sensor elements (28-34,66,92), as well as optional magnetic field-responsive data elements (38,40,20) adapted for attachment to object (44) or to a substrate (82) in turn attached to object (44). The temperature sensor elements (28-34,66,92) preferably have magnetic bodies (22,70) exhibiting a re-magnetization response under the influence of an applied alternating magnetic field, which is different below and above a set point temperature, normally the Curie temperature of the magnetic body (22) or an adjacent sheath (74,94). The temperature sensors (26,64,96) are used in conjunction with a detector (46) operable to generate a magnetic field of magnitude sufficient to cause re-magnetization responses of the temperature sensor elements (28-34,66,92) and optional data elements (38,40,20), to detect such responses, and to use the detected responses to determine the temperature of object (44) by means of a decoding algorithm. The temperature sensors (26,64,96) can be used in closed-loop heating systems (98) capable of controlling the heating of an object (114).
Owner:TSI TECH

Variable heat pump using magneto caloric materials

A heat pump system is provided that uses multiple stages of MCMs with different Curie temperature ranges. An adjustable fluid flow path is used whereby the number of stages through which a heat transfer fluid passes can be varied depending upon e.g., the amount of heating or cooling desired. In certain embodiments, a magnetic field used to activate the MCMs can be manipulated so that the number of stages of MCMs that are activated also be adjusted. These and other features can improve the operating efficiency of the heat pump.
Owner:HAIER US APPLIANCE SOLUTIONS INC

Stress control of thin films by mechanical deformation of wafer substrate

A method of improving the physical and / or electrical and / or magnetic properties of a thin film material formed on a substrate, wherein the properties of the thin film material are stress-dependent, by selectively applying force to the substrate during the film formation and / or thereafter during the cooling of the film in the case of a film formed at elevated temperature, to impose through the substrate an applied force condition opposing or enhancing the retention of stress in the product film. The method of the invention has particular utility in the formation of ferroelectric thin films which are grown at temperature above the Curie temperature, and which may be placed in tension during the cooling of the film to provide ferroelectric domains with polarization in the plane of the film.
Owner:HANGER SOLUTIONS LLC +1

Method for manufacturing a braking element with integrated sensor, in particular a brake pad, brake pad with integrated sensor, vehicle braking system and associated method

A method in which at least one piezoceramic sensor, which converts every mechanical force to which it is subjected into an electrical signal and having a Curie temperature higher than 200° C., is solidarized directly onto the surface of a metal support element of a vehicle braking element, which during use faces a vehicle element to be braked. While in contact with such a surface, an electrical circuit is implemented that picks up and eventually processes the electrical signal, the electrical circuit being connected with a connector integrated with the metal support element. An electrically insulating layer sandwiches the at least one piezoceramic sensor and the electrical circuit, and a block of friction material with an underlying damping layer is formed upon the electrically insulating layer. After forming the block of friction material, the piezoceramic sensor is polarized by applying a predetermined potential difference thereto by means of the connector.
Owner:ITT ITAL SRL

Heat pump with magneto caloric materials and variable magnetic field strength

A heat pump system is provided that uses MCM for heating or cooling. A magnetic field of decreasing flux intensity is used to decrease power consumption and reduce e.g., the size of one or more magnetic devices associated with creating the magnetic field. In one exemplary embodiment, the heat pump is constructed from a continuously rotating regenerator where MCM is cycled in and out of a magnetic field in a continuous manner and a heat transfer fluid is circulated therethrough to provide for heat transfer in a cyclic manner. The magneto caloric material may include stages having different Curie temperature ranges. An appliance using such a heat pump system is also provided. The heat pump may also be used in other applications for heating, cooling, or both.
Owner:HAIER US APPLIANCE SOLUTIONS INC

Thermal-assist magnetic recording medium and magnetic recording and reproducing apparatus

A thermal-assist magnetic recording medium is provided which can accomplish a surface recording density of 1 Tbit / inch2. The thermal-assist magnetic recording medium includes: a substrate; a plurality of underlying layers formed on the substrate; a first magnetic layer formed on the underlying layers; a coupling control layer formed on the first magnetic layer and formed of a ferromagnetic alloy; and a second magnetic layer formed on the coupling control layer. Here, Curie temperatures of the first magnetic layer and the second magnetic layer are higher than the Curie temperature of the coupling control layer, an anisotropy magnetic field of the first magnetic layer is greater than the anisotropy magnetic field of the second magnetic layer, and a saturation magnetic field has a minimum value at a temperature of 350° C. or lower.
Owner:RESONAC CORP

Apparatus and method for ferroelectric conversion of heat to electrical energy

The present invention relates to a new method and apparatus for converting heat to electric energy. The invention exploits the rapid changes in spontaneous polarization that occur in ferroelectric materials during phase change. The invention permits robust and economical generation of electric energy from thermal energy, and it can be used in many different applications. In one aspect, the present invention relates to an apparatus for converting heat to electric energy comprising a pair of electrodes; a ferroelectric layer formed there between with a ferroelectric material characterized with a Curie temperature, Tc, such that when the temperature of the ferroelectric material is lower than Tc, the ferroelectric material is in a ferroelectric phase in which very powerful polarization is established spontaneously in the unit cells of the ferroelectric material, and when the temperature of the ferroelectric material is greater than Tc, spontaneous polarization is not established in the unit cells of the ferroelectric material; and a means for alternately delivering a flow of cold fluid and a flow of hot fluid to the ferroelectric layer so as to alternately cool the ferroelectric layer at a first temperature TL that is lower than Tc, and heat the ferroelectric layer at a second temperature TH that is higher than Tc, thereby the ferroelectric material of the ferroelectric layer undergoes alternating phase transitions between the ferroelectric phase and the paraelectric phase with temperature cycling.
Owner:THE NEOTHERMAL ENERGY

Stress control of thin films by mechanical deformation of wafer substrate

A method of improving the physical and / or electrical and / or magnetic properties of a thin film material formed on a substrate, wherein the properties of the thin film material are stress-dependent, by selectively applying force to the substrate during the film formation and / or thereafter during the cooling of the film in the case of a film formed at elevated temperature, to impose through the substrate an applied force condition opposing or enhancing the retention of stress in the product film. The method of the invention has particular utility in the formation of ferroelectric thin films which are grown at temperature above the Curie temperature, and which may be placed in tension during the cooling of the film to provide ferroelectric domains with polarization in the plane of the film.
Owner:FELLOWS RES B V +1

Spin momentum transfer MRAM design

We describe the structure and method of formation of a STT MTJ or GMR MRAM cell element that utilizes transfer of spin torque as a mechanism for changing the magnetization direction of a free layer. The critical current is reduced by constructing the free layer as a lamination comprising two ferromagnetic layers sandwiching a coupling valve layer. When the Curie temperature of the coupling valve layer is above the temperature of the cell, the two ferromagnetic layers are exchange coupled in parallel directions of their magnetization. When the coupling valve layer is above its Curie temperature, it no longer exchange couples the layers and they are magnetostatically coupled. In the exchange coupled configuration, the free layer serves to store data and the cell can be read. In its magnetostatically coupled configuration, the cell can be more easily written upon because one of the layers can assist the spin torque transfer by its magnetostatic coupling. If the free layer is formed as a multi-layered lamination of N periodically repeating combinations of a ferromagnetic layer and a coupling valve layer, the critical current can be reduced by a factor of N.
Owner:TAIWAN SEMICON MFG CO LTD

Regenerator including magneto caloric material with channels for the flow of heat transfer fluid

The present invention provides a regenerator having magneto caloric material (MCM) configured with flow channels for the passage of a heat transfer fluid through the MCM. The flow channels are created by positioning elongate elements of the MCM adjacent to each other. The elongate elements provide surface area necessary for heat transfer while the flow channels reduce the pressure drop incurred by the heat transfer fluid as it flows through the regenerator. The elongate elements can also be configured with MCM having different Curie temperatures (e.g., different Curie temperature ranges) in order to accommodate a variety of ambient conditions in which the regenerator may be used.
Owner:HAIER US APPLIANCE SOLUTIONS INC

Composite heat assisted magnetic recording media with temperature tuned intergranular exchange

A thin film structure comprises a first layer including a first plurality of grains of magnetic material having a first intergranular exchange coupling, and a second layer positioned adjacent to the first layer and including a second plurality of grains of magnetic material having a second intergranular exchange coupling, wherein the second intergranular exchange coupling is larger than the first intergranular exchange coupling and wherein the Curie temperature of the first layer is greater than the Curie temperature of the second layer. A data storage system including the thin film structure is also provided.
Owner:SEAGATE TECH LLC

Image heating apparatus with related image heating member and heat pipe

An image heating apparatus includes a coil for generating magnetic flux and an image heating member. The image heating member comprises an electroconductive layer which generates heat by eddy current generated by the magnetic flux from the coil, for heating an image on a recording material. The image heating apparatus further comprises an energization control device for controlling energization of the coil so that a temperature of the image heating member is a predetermined temperature Tf (° C.), and a heat pipe contactable with the image heating member. The electroconductive layer has a Curie temperature Tc so that the relation Tf≦Tc≦Tf+Qmax (W)×Rh (° C. / W) is satisfied, wherein Qmax (W) represents a maximum amount of heat transport, and Rh (° C. / W) represents a value of heat resistance of the heat pipe at a dryout occurrence temperature of the heat pipe.
Owner:CANON KK

Heat pump with restorative operation for magneto caloric material

A heat pump system is provided that uses MCM to provide for heating or cooling. The heat pump can include one or more stages of MCM, each stage having an original peak Curie temperature. In the event the magneto caloric response of one or more stages of MCM degrades, the present invention provides for operating the heat pump system so that one or more stages of MCM are held at a different temperature from the original peak Curie temperature so as to restore the MCM to its original peak Curie temperature or to within a certain interval thereof. The present invention can be used with e.g., an appliance, air-conditioning systems (heating or cooling), or other devices using such a heat pump system as well.
Owner:HAIER US APPLIANCE SOLUTIONS INC

Magneto-optical recording medium and reproducing method thereof

InactiveUS20050002318A1Effectively transferred and readGood effectMechanical recordingRecord information storageControl layerCoupling
A magneto-optical recording medium, including a recording layer, a transfer control layer magnetically coupled to the recording layer, and a reproduction layer. The recording layer includes a recording magnetic domain in which information is recorded by a magnetization direction vertical to the surface of the film. The reproduction layer includes a reproduction magnetic domain in which information in the recording layer is transferred and formed as a magnetization direction by magnetic coupling. The direction of magnetization of the recording magnetic domain of the recording layer and the direction of magnetization of the transfer control layer corresponding to the recording magnetic domain are in opposite directions in at least part of the range of temperatures less than a transfer temperature where the reproduction magnetic domain is transferred to the reproduction layer. The Curie point temperature of the transfer control layer is higher than this transfer temperature.
Owner:PANASONIC CORP

Induction cured power coatings for temperature sensitive substrates

According to the present invention, powder coating compositions comprise one or more than one thermoplastic or thermosetting polymer or resin and one or more than one finely divided magnetic material, such as a ferromagnetic material. Preferred magnetic materials include Ni1−xZnxFe2O4 compounds, wherein 0.4≦X≦0.75, piezoelectric compounds, ferrimagnetic δFeOOH, Fe—Ni—B, Cu2MnIn, transparent polymer-Cobalt oxide nanocomposites and soft ferrites. In addition, the present invention provides methods of making powder coatings on a substrate comprising applying to a substrate a resinous powder coating composition comprising one or more than one magnetic material to form a powder coating layer, followed by induction heating to melt the applied powder coating to form a coating film and, optionally, to cure the powder coating. The powder coatings remain at a pre-selected temperature equal to or less than the Curie temperature (TC) of the one or more than one finely divided magnetic material during induction heating of the powder coating without directly heating the substrate. Powder coatings on metal parts may also be induction heat cured.
Owner:ROHM & HAAS CO

Biaxially textured articles formed by power metallurgy

A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
Owner:UT BATTELLE LLC

Composite heat assisted magnetic recording media with temperature tuned intergranular exchange

A thin film structure comprises a first layer including a first plurality of grains of magnetic material having a first intergranular exchange coupling, and a second layer positioned adjacent to the first layer and including a second plurality of grains of magnetic material having a second intergranular exchange coupling, wherein the second intergranular exchange coupling is larger than the first intergranular exchange coupling and wherein the Curie temperature of the first layer is greater than the Curie temperature of the second layer. A data storage system including the thin film structure is also provided.
Owner:SEAGATE TECH LLC

Thermally assisted magnetic recording system and method of writing using magnetic and thermal gradients

A magnetic recording system is provided having a write head employing a combination of magnetic write field gradient and thermal gradient to write data on a ‘thermal spring’ magnetic recording media. The write head comprises a magnetic element using a write current to induce a magnetic write field at the magnetic media and a thermal element using a very small aperture laser to heat a portion of the media. The thermal spring magnetic media comprises [comprises] first and second stacks providing two exchange coupled ferromagnetic layers having different Curie temperatures [The first stack has a high magneto-crystalline anisotropy, a relatively low saturation magnetization and a low Curie temperature.] [The second stack has a relatively low magneto-crystalline anisotropy, a high saturation magnetization and a high Curie temperature.] The magnetic field gradient and the thermal gradient are arranged to substantially overlap at the trailing edge of the heated portion of the magnetic media allowing data at high density with high thermal stability to be recorded on the rapidly cooling thermal spring magnetic recording media.
Owner:WESTERN DIGITAL TECH INC

Aerosol-generating article with multi-material susceptor

An aerosol-generating article (10) comprises an aerosol-forming substrate (20) and a susceptor (1, 4) for heating the aerosol-forming substrate (20). The susceptor (1, 4) comprises a first susceptor material (2, 5) and a second susceptor material (3, 6) having a Curie temperature, the first susceptor material being disposed in intimate physical contact with the second susceptor material. The first susceptor material may also have a Curie temperature, the second Curie temperature being lower than 500 DEG C, and lower than the Curie temperature of the first susceptor material, if the first susceptor material has a Curie temperature. The use of such a multi-material susceptor allows heating to be optimised and the temperature of the susceptor to be controlled to approximate the second Curie temperature without need for direct temperature monitoring.
Owner:PHILIP MORRIS PROD SA

Charge restrained wafer of piezoelectric oxide single crystal, and charge restraining method and apparatus for piezoelectric oxide single crystal

To provide a wafer, made from a lithium tantalate single crystal or a lithium niobate single crystal, wafer which is charge restrained without impairing the piezoelectricity. Moreover, to provide a processing method and a processing apparatus therefor. It is characterized in that a wafer 50, made from a lithium tantalate single crystal or a lithium niobate single crystal, and a reducing agent 60, including an alkali metal or an alkali metal compound, are accommodated in a processing tank 2, and the inside of the processing tank 2 is held at a temperature of from 200° C. or more to less than a Curie temperature of the single crystal under decompression, thereby reducing the wafer 50.
Owner:YAMAJIYU CERAMICS

MRAM Device Structure Employing Thermally-Assisted Write Operations and Thermally-Unassisted Self-Referencing Operations

A thermally-assisted MRAM structure which is programmable at a writing mode operating temperature is presented and includes an anti-ferromagnet, an artificial anti-ferromagnet, a barrier layer, and a free magnetic layer. The anti-ferromagnet is composed of a material having a blocking temperature Tb which is lower than the writing mode operating temperature of the magnetic random access memory structure. The artificial anti-ferromagnet is magnetically coupled to the anti-ferromagnet, and includes first and second magnetic layers, and a coupling layer interposed therebetween, the first and second magnetic layers having different Curie point temperatures. The barrier layer is positioned to be between the second magnetic layer and the free magnetic layer.
Owner:INFINEON TECH AG +1

Induction cured powder coatings for temperature sensitive substrates

According to the present invention, powder coating compositions comprise one or more than one thermoplastic or thermosetting polymer or resin and one or more than one finely divided magnetic material, such as a ferromagnetic material. Preferred magnetic materials include Ni1−xZnxFe2O4 compounds, wherein 0.4≦X≦0.75, piezoelectric compounds, ferrimagnetic δFeOOH, Fe—Ni—B, Cu2MnIn, transparent polymer-Cobalt oxide nanocomposites and soft ferrites. In addition, the present invention provides methods of making powder coatings on a substrate comprising applying to a substrate a resinous powder coating composition comprising one or more than one magnetic material to form a powder coating layer, followed by induction heating to melt the applied powder coating to form a coating film and, optionally, to cure the powder coating. The powder coatings remain at a pre-selected temperature equal to or less than the Curie temperature (TC) of the one or more than one finely divided magnetic material during induction heating of the powder coating without directly heating the substrate. Powder coatings on metal parts may also be induction heat cured.
Owner:ROHM & HAAS CO

Piezoelectric member, piezoelectric member element, liquid discharge head in use thereof, liquid discharge apparatus and method of manufacturing piezoelectric member

A piezoelectric member of uniaxial crystal or uniaxial crystal and the piezoelectric member has perovskite type oxide described to be ABO3 in a general formula with a main component of the A being Pb and a main component of the B containing at least three kinds of elements selected from the group consisting of Mg, Zn, Sc, In, Yb, Ni, Nb, Ti and Ta and film thickness of the piezoelectric member is not less than 1 μm and not more than 10 μm and the piezoelectric member fulfills a predetermined conditions on relative dielectric constant or Curie temperature.
Owner:CANON KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products