Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2473 results about "Al powder" patented technology

Titanium alloy based dispersion-strengthened composites

Titanium based metal matrix composites reinforced with ceramic particulate are well known, based on a blend of titanium alloy powders with ceramic powders, e.g., aluminum oxide powders, utilizing a low energy ball milling process, followed by cold compacting and sintering to produce an appropriate composite. This prior art process is disadvantaged from the point of view that there are virtually no particles in the blend below the micrometer size range, which lack has a deleterious effect on the subsequent processing of the composite. This problem has been overcome by utilizing dry high energy intensive milling in the process, which has the effect of providing the necessary number of small particles below the micrometer size range as well as enhancing the reactivity of different particles with one another. In order to produce a titanium base alloy alumina metal matrix composite, titanium dioxide powder is blended with aluminum powder and subjected to dry high energy intensive milling until the separate particle phases achieve a size of 500 nanometers maximum. The intermediate powder product is then heated to form the titanium alloy / amumina metal matrix composite in which the ceramic particles have an average diameter of no more than 3 mu, and the oxide consists of more than 10% and less than 60% by volume fraction of the total composite. The composites have extensive application to tough and strong engineering alloys.
Owner:TITANOX DEV

Powder metallurgy preparation method of carbon nanotube reinforced aluminum alloy composite material

ActiveCN103789564ARapid precipitation strengtheningReliable and efficient processMicro nanoThermal deformation
The invention provides a powder metallurgy preparation method of a carbon nanotube reinforced aluminum alloy composite material. The method comprises the following steps: pre-preparing micro-nano flake powder of an alloying component, subsequently ball-milling the powder with a carbon nanotube and spherical pure aluminum powder to prepare flake composite powder, and further performing densifying, sintering, thermal deformation processing and thermal treatment to achieve alloying so as to finally obtain the carbon nanotube reinforced aluminum alloy composite material. Uniform compounding of the matrix aluminum powder, the carbon nanotube and the alloying component can be achieved through limited ball-milling, and meanwhile dangerous elements or uneasy grinding elements such as magnesium and silicon which are high in activity and likely to combust and explode are avoided by adopting the stable and easily ground pre-alloying aluminum powder, so that the security and the reliability are improved; in addition, because of large interlayer boundary and small layer thickness distance, the flake structure is beneficial for uniformly dispersing the alloying component and forming refined dispersed separated phase. The method is beneficial for bringing the effects of composite reinforcement of carbon nanotubes and alloy reinforcement into play to the maximum extent, is energy-saving and time-saving, and is safe and feasible.
Owner:SHANGHAI JIAO TONG UNIV

Composite ceramic filter core and preparation method thereof

InactiveCN102924067AGood mesoporous materialHas a hydrophobic surfaceFiltration separationCeramicwareActivated carbonComposite ceramic
The invention relates to a composite ceramic filter core and a preparation method thereof, in particular to a low-temperature sintering and high-strength diatomaceous earth composite ceramic filter core containing multi-walled carbon nanotubes and a preparation method thereof. The composite ceramic filter core comprises, by mass, 60-80% of refined diatomaceous earth, 12-20 parts of activated carbon, 4.5-9 parts of dispersing agent, 2-6 parts of sintering additives, 1-3 parts of antibacterial agents and 0.5-2 parts of carbon nanotubes. According to the low-temperature sintering and high-strength diatomaceous earth composite ceramic filter core containing the carbon nanotubes, due to the fact that the multi-walled carbon nanotubes are evenly distributed in the composite ceramic filter core, mechanical performance of the ceramic filter core can be improved, and the multi-walled carbon nanotubes are of mesoporous structures simultaneously and can perform effective adsorption on remove heavy metal ions in water. In addition, the sintering temperature is reduced to be below 950 DEG C by adding micron-sized metal aluminum powder, natural nano micropores of the diatomaceous earth are reserved, the mechanical strength of the ceramic filter core is further improved, and the compression strength is above 0.5GPa.
Owner:珠海启月生物科技有限公司

Method for melting nickel-base high temperature alloy with electro-slag furnace

The invention relates to a method for melting a nickel-base high temperature alloy with an electro-slag furnace. The method includes the following methods: loading materials, welding a high temperature alloy electrode and a false electrode to be smelted together, and placing slag materials at the bottom of a crystallizer; blowing the welded electrodes with inert gases, and closing a protection cover; protecting a smelting closing smoke exhaust valve, and feeding an Ar gas into the crystallizer and the protection cover; striking an arc and melting slag; cleaning smelting slag materials, starting a smelting period, and swinging a slag resistor for less than 0.5 m omega during the smelting process; adding oxidizing agents, and adding metal aluminum powder continuously or at intervals to serve as deoxidizing agents during an electro-slag re-melting process; adopting feeding thorough three stages, power feeding is decreased rapidly, power feeding is decreased slowly, and finally heat is preserved at constant power; and casting a die, cooling and demolding the die. According to the method for melting the nickel-base high temperature alloy with the electro-slag furnace, the surface of a nickel-base high temperature steel ingot has no slag groove defect, and the burning losses of Al and Ti are less than or equal to 5%.
Owner:SHANXI TAIGANG STAINLESS STEEL CO LTD

Oily high-temperature resistant protective coating material, application thereof and titanium ingot production method

The invention discloses an oily high-temperature resistant protective coating material. The oily high-temperature resistant protective coating material is obtained after a raw material mixture is uniformly mixed, wherein the raw material mixture contains an oxidation protecting agent and an oily film forming agent; the oxidation protecting agent contains Al powder and Fe powder which are in the weight ratio of 1: (0.01-0.1). The invention further discloses an application of the oily high-temperature resistant protective coating material in titanium ingot production and a titanium ingot production method. The oily high-temperature resistant protective coating material disclosed by the invention has the advantages that the condition that the surface of a titanium ingot is not subjected to oxidation cracking under the condition that the titanium ingot undergoes constant temperature for 8 hours at the high temperature of 1,000 DEG C can be guaranteed, the forming possibility of an oxygen dissolved layer can be greatly reduced, and the yield and production efficiency of a titanium material are increased; the construction environment is not affected; the preparation process is simple; a variety of coating manners, such as pneumatic spraying, vacuum spraying and brushing, can be adopted. The titanium ingot production method disclosed by the invention has good economic and social benefits and has relatively broad popularization and application prospects in titanium plate and titanium tube production industries.
Owner:PANZHIHUA IRON & STEEL RES INST OF PANGANG GROUP

Portable welding pen

The invention discloses a portable welding pen, which belongs to the field of welding and cutting technique. The portable welding pen comprises a powder tube filled with a thermit, an ignition head on the head part of the powder tube, and an ignition segment between the ignition head and the thermit, wherein the tail part of the powder tube is closed by a clamping end with external threads on one end; the ignition head is made of red phosphorus; the ignition segment adopts thermit welding pyrophoric powder; the thermit contains an exothermic agent, a slagging flux and an alloying agent; the exothermic agent contains CuO powder 60 to 70 wt% and Al powder 15 to 20 wt%; the slagging flux contains CaF2 powder 4 to 8 wt% and CaSO4 powder 5 to 7 wt%; and the alloying agent contains ferromanganese powder 1 to 3 wt% and ferronickel powder 2 to 4 wt%. When in use, the welding pen can be used for welding and cutting workpieces by withdrawing the pen tube, screwing the pen tube on the clamping end, holding the pen tube and then igniting the ignition head at the front end of the welding pen. The welding pen has low manufacture cost, and is small and portable. The welding pen is particularly suitable for the welding and cutting operation of steel and copper materials under emergence conditions, and has the advantages of high welding quality and high cutting speed.
Owner:常熟紫金知识产权服务有限公司

Zinc-nickel seeping layer ferrous metal corrosion protection process

The invention discloses a process for resisting ferrous metal corrosion of a zinc nickel diffusion layer. The process comprises the steps of alkaline degreasing, shot blasting, heating diffusion layer, water washing dust removal and colorful closing according to the requirement of a customer, wherein in the heating diffusion layer step, the zinc nickel diffusion layer and a metal matrix are put in a sealed metallic container and heated; the zinc nickel diffusion layer is prepared by evenly mixing the following powders in mass proportion: 20 to 30 percent of Zn powder, 0.5 to 1.4 percent of Ni powder, 3 to 12 percent of Al powder, 2 to 6 percent of rare earth, 1 to 4 percent of NH4Cl ammonium chloride, the balance being Al2O3 powder. The diffusion layer has the advantages of high rigidity, good wear resistance, unchangeableness of original mechanical performances of products, high adhesion strength, bumping and rolling resistance, good solderability, moisture and heat resistance and acid and alkali resistance; the diffusion layer has uniform thickness and compactness, and appearances of finished products have good uniformity; and no three-waste emission occurs during the course of processing, so the process belongs to the clean production process and is environment-friendly.
Owner:CHONGQING DAYOU SURFACE TECH

Oxide-dispersion-strengthening ferrite/martensitic steel and preparing method

ActiveCN105039857AUniform solid solutionAvoid phase changeAl powderGranularity
The invention relates to oxide-dispersion-strengthening ferrite / martensitic steel with the excellent high-temperature strength and the good oxidation resistance and a preparing method of the oxide-dispersion-strengthening ferrite / martensitic steel. The oxide-dispersion-strengthening ferrite / martensitic steel comprises 8% to 10% of Cr, 0.5% to 2% of W, 1.5% to 5.5% of Al, 0.1% to 0.4% of V, 0.1% to 0.5% of Mn, 0% to 1.0% of Zr, 0% to 1.0% of Hf and 0.25% to 0.5% of Y2O3. The content of C and the content of N are controlled to be lower than 0.1%, and at least one kind of the Hf and the Zr is contained; the oxygen content of atomized powder is controlled to be lower than 0.05 wt.%, the atomized powder with the particle size ranging from 50 meshes to 200 meshes is selected to be mechanically alloyed with Al powder, Zr powder, Hf powder and Y2O3 powder, and the size of obtained powder ranges from 90 micrometers to 200 micrometers; silicate glass is used for wrapping, compressing and molding, the pressure is started to be boosted to 120 MPa to 180 MPa at the temperature of 850 DEG C, a two-stage sintering manner in which the temperature ranging from 850 DEG C to 950 DEG C is kept for 1 hour and the temperature ranging from 1050 DEG C to 1150 DEG C is kept for 1 hour is adopted, the tensile strength of the finally-obtained ferrite / martensitic steel at the temperature of 700 DEG C ranges from 250 MPa to 320 MPa, and the ductility of the finally-obtained ferrite / martensitic steel at the temperature of 700 DEG C ranges from 18% to 32%; and the oxidation performance of the dispersion-strengthening steel is also greatly improved on the premise that the high-temperature strength and the high-temperature plasticity are guaranteed, and after 100-h oxidation is carried out at the temperature of 850 DEG C, the oxidation weight increase only ranges from 0.0327 mg / cm<3> to 0.098 mg / cm<3>.
Owner:UNIV OF SCI & TECH BEIJING

Preparation technology of nanometer multi-component alloy co-cementation anti-corrosive coating

The invention relates to a preparing process of a nanometer complex alloy co-permeation anticorrosion coating layer, which belongs to the technical field of the metal surface modified or alloying treatment. The preparing process comprises computer analog computation, preliminary treatment of steel members, complex configuration of co-permeation agent, energizing agent, active agent and filling agent, co-permeation processing of steel members and after-treatment of steel members. The preparing process has the advantages that firstly, the computer simulation is adopted to calculate optimal machining conditions, and to reduce the various consumption under the conditions; secondly, partial zinc powder is replaced by aluminum powder as the co-permeation agent, the hardness and the wear resistant property of a co-permeation layer are improved, and the co-permeation cost is reduced; thirdly, nanometer mixed rare earth oxide with low price and good effect is adopted as the energizing agent; fourthly, the co-permeation layer contains no heavy metal cadmium, is environmentally protective and is free from pollution; fifthly, the preparing process has no hydrogen embitterment damage, the processing temperature is low, the time is short, the hydrogen embitterment damage occurring on the co-permeation layer is avoided, and the energy consumption is reduced simultaneously.
Owner:天津市钰源地紧固件有限公司

Production method of chromium-aluminium alloy target material

The invention relates to a production method of a chromium-aluminum alloy target material, which includes the following steps: (1) placing chromium powder and aluminum powder into a V-shaped mixer for mixing; (2) placing the powder into a cold isostatic pressing sheath, vacuumizing, sealing, suppressing for 10 to 20 minutes, then placing in a vacuum self-propagating high-temperature synthetic furnace, and performing self-propagating reaction to acquire foamed chromium-aluminium alloy; (3) smashing the chromium-aluminium alloy into alloy powder with size of -200 mesh, placing the alloy powder in the cold isostatic pressing sheath for suppressing, so as to obtain a chromium-aluminium alloy blank; (4) placing the alloy blank in a steel sheath for vacuum degassing, then, performing hot isostatic pressing sintering treatment to obtain a chromium-aluminium alloy ingot; and (5) machining the chromium-aluminium alloy ingot to obtain a finished chromium-aluminium alloy target material. According to the invention, after the two raw materials are fully mixed and before the hot isostatic pressing sintering treatment is carried out, the alloying treatment in the step (2) is particularly adopted, so the prepared chromium-aluminum alloy target material has high density, uniform crystallite size distribution and excellent vacuum coating property.
Owner:北京九州新科科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products