Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

9637results about "Metal/alloy conductors" patented technology

Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film

ActiveUS20090152506A1Orientation can be controlledLow costFrom gel stateFrom solid stateOrganic solventDevice material
In a process for producing an oriented inorganic crystalline film, a non-monocrystalline film containing inorganic crystalline particles is formed on a substrate by a liquid phase technique using a raw-material solution which contains a raw material and an organic solvent, where the inorganic crystalline particles have a layered crystal structure and are contained in the raw material. Then, the non-monocrystalline film is crystallized by heating the non-monocrystalline film to a temperature equal to or higher than the crystallization temperature of the non-monocrystalline film so that part of the inorganic crystalline particles act as crystal nuclei.
Owner:FUJIFILM CORP

Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film

In a process for producing an oriented inorganic crystalline film, a non-monocrystalline film containing inorganic crystalline particles is formed on a substrate by a liquid phase technique using a raw-material solution which contains a raw material and an organic solvent, where the inorganic crystalline particles have a layered crystal structure and are contained in the raw material. Then, the non-monocrystalline film is crystallized by heating the non-monocrystalline film to a temperature equal to or higher than the crystallization temperature of the non-monocrystalline film so that part of the inorganic crystalline particles act as crystal nuclei.
Owner:FUJIFILM CORP

Conductive adhesive agent and process for manufacturing article using the conductive adhesive agent

The present invention provides a conductive adhesive agent capable of being diluted with a solvent to give good coating workability and allowing formation of a conductive joint excellent in both thermal conductivity and electrical conductivity by inhibiting a gas generated when a binder resin is heat-cured after attachment of a part. The conductive adhesive agent according to the present invention is a conductive adhesive agent wherein, based on 100 parts by weight of silver powder having an average particle diameter of micrometers, which is used for a conductive medium, e.g. as a main component, 1 to 10 parts by weight of silver fine particles having an average particle diameter of nanometers is used in combination therewith and 5 to 15 parts by weight of thermosetting resin as a binder resin component and 10 parts or less by weight of solvent for adjustment of a fluid viscosity are blended therein as essential components, and by selection of such a blending ratio, generation of a gas component during heating and curing of the thermosetting resin to prevent formation of voids, and at the same time, fabrication of a conductive joint excellent in thermal conductivity and electrical conductivity is achieved.
Owner:HARIMA CHEM INC +1

Graphene film as transparent and electrically conducting material

A transparent and conductive film comprising at least one network of graphene flakes is described herein. This film may further comprise an interpenetrating network of other nanostructures, a polymer and / or a functionalization agent(s). A method of fabricating the above device is also described, and may comprise depositing graphene flakes in solution and evaporating solvent therefrom.
Owner:SAMSUNG ELECTRONICS CO LTD

Electrical conductors formed from mixtures of metal powders and metallo-organic decomposition compounds

The present invention relates to a thick film formed of a mixture of metal powders and metallo-organic decomposition (MOD) compounds in an organic liquid vehicle and a process for advantageously applying them to a substrate by silk screening or other printing technology. The mixtures preferably contain metal flake with a ratio of the maximum dimension to the minimum dimension of between 5 and 50. The vehicle may include a colloidal metal powder with a diameter of about 10 to about 40 nanometers. The concentration of the colloidal metal in the suspension can range from about 10 to about 50% by weight. The MOD compound begins to decompose at a temperature of approximately about 200 DEG C. to promote consolidation of the metal constituents and bonding to the substrate which is complete at temperatures less than 450 DEG C. in a time less than six minutes. The mixtures can be applied by silk screening, stencilling, gravure or lithography to a polymer-based circuit board substrate for producing rigid and flexible printed wiring boards in a single operation with negligible generation of hazardous wastes. The same mixtures can be used in place of solder to assemble circuits by bonding electrical components to conductors as well as to make the conductors themselves.
Owner:PARELEC

Electrically conductive polymer composition

InactiveUS6184280B1Sufficient electrical conductivityImprove polymer propertiesOther chemical processesConductive materialPolymer scienceCarbon fibers
An electrically conductive polymer composition comprises a moldable organic polymer having hollow carbon microfibers and an electrically conductive white powder uniformly dispersed therein, the carbon fibers being present in an amount of 0.01 wt. % to less than 2 wt. % and the electrically conductive white powder being present in an amount of 2.5-40 wt. %, each percent range based on the total weight of the composition, the amounts of carbon microfibers and white powder being sufficient to simultaneously impart the desired electrical conductivity to the composition and white pigmentation to the composition.
Owner:MITSUBISHI MATERIALS CORP +1

High quality large area bulk non-polar or semipolar gallium based substrates and methods

A large area nitride crystal, comprising gallium and nitrogen, with a non-polar or semi-polar large-area face, is disclosed, along with a method for making. The crystal is useful as a substrate for a light emitting diode, a laser diode, a transistor, a photodetector, a solar cell, or for photoelectrochemical water splitting for hydrogen generation.
Owner:SORAA

Polycrystalline group iii metal nitride with getter and method of making

A gettered polycrystalline group III metal nitride is formed by heating a group III metal with an added getter in a nitrogen-containing gas. Most of the residual oxygen in the gettered polycrystalline nitride is chemically bound by the getter. The gettered polycrystalline group III metal nitride is useful as a raw material for ammonothermal growth of bulk group III nitride crystals.
Owner:SLT TECH

Methods and compositions for metal nanoparticle treated surfaces

The present invention comprises methods and compositions comprising metal nanoparticles. The invention comprises metal nanoparticles and surfaces treated with a metal nanoparticle coating. The present invention further comprises compositions for preparing nanoparticles comprising at least one stabilizing agent, one or more metal compounds, at least one reducing agent and a solvent. In one aspect, the stabilizing agent comprises a surfactant or a polymer. The polymer may comprise polymers such as polyacrylamides, polyurethanes, and polyamides. In one aspect, the metal compound comprises a salt comprising a metal cation and an anion. The anion may comprise saccharinate derivatives, long chain fatty acids, and alkyl dicarboxylates.
Owner:AVENT INC

Solvent-free process based graphene electrode for energy storage devices

PendingUS20140030590A1Inexpensive and durable and highly reliableHigh capacitanceMaterial nanotechnologyHybrid capacitor electrodesGraphene flakeSolvent free
Disclosed is an electrode for an electrochemical energy storage device, the electrode comprising a self-supporting layer of a mixture of graphene sheets and spacer particles and / or binder particles, wherein the electrode is prepared without using water, solvent, or liquid chemical. The graphene electrode prepared by the solvent-free process exhibits many desirable features and advantages as compared to the corresponding electrode prepared by a known wet process. These advantages include a higher electrode specific surface area, higher energy storage capacity, improved or higher packing density or tap density, lower amount of binder required, lower internal electrode resistance, more consistent and uniform dispersion of graphene sheets and binder, reduction or elimination of undesirable effect of electrolyte oxidation or decomposition due to the presence of water, solvent, or chemical, etc.
Owner:GLOBAL GRAPHENE GRP INC

Micro coaxial cable for high bending performance

A micro coaxial cable with a high bending performance, having an inner conductor; an insulating layer configured to surround the inner conductor, and a helical winding conductor configured to surround the insulating layer and having an elongation of 1.5 to 4% and a pitch of 3.0 to 5.0 mm.
Owner:HITACHI METALS LTD

Powder material, electrode structure using the powder material, and energy storage device having the electrode structure

A powder material which can electrochemically store and release lithium ions rapidly in a large amount is provided. In addition, an electrode structure for an energy storage device which can provide a high energy density and a high power density and has a long life, and an energy storage device using the electrode structure are provided. In a powder material which can electrochemically store and release lithium ions, the surface of particles of one of silicon metal and tin metal and an alloy of any thereof is coated by an oxide including a transition metal element selected from the group consisting of W, Ti, Mo, Nb, and V as a main component. The electrode structure includes the powder material. The battery device includes a negative electrode having the electrode structure, a lithium ion conductor, and a positive electrode, and utilizes an oxidation reaction of lithium and a reduction reaction of lithium ion.
Owner:CANON KK

Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom

The present invention is directed to an electroconductive thick film composition comprising: (a) electroconductive metal particles selected from (1) Al, Cu, Au, Ag, Pd and Pt; (2) alloy of Al, Cu, Au, Ag, Pd and Pt; and (3) mixtures thereof; (3) glass frit wherein said glass frit is Pb-free; dispersed in (d) an organic medium, and wherein the average diameter of said electroconductive metal particles is in the range of 0.5-10.0 μm. The present invention is further directed to an electrode formed from the composition as detailed above and a semiconductor device(s) (for example, a solar cell) comprising said electrode.
Owner:SOLAR PASTE LLC

Semiconductor thin film, method for manufacturing the same, thin film transistor, and active-matrix-driven display panel

ActiveUS7998372B2Hardly erroneously operatesSmall currentNanotechConductive materialIndiumActive matrix
Disclosed is a semiconductor thin film which can be formed at a relatively low temperature even on a flexible resin substrate. Since the semiconductor thin film is stable to visible light and has high device characteristics such as transistor characteristics, in the case where the semiconductor thin film is used as a switching device for driving a display, even when overlapped with a pixel part, the luminance of a display panel does not deteriorate. Specifically, a transparent semiconductor thin film 40 is produced by forming an amorphous film containing zinc oxide and indium oxide and then oxidizing the film so that the resulting film has a carrier density of 10+17 cm−3 or less, a Hall mobility of 2 cm2 / V·sec or higher, and an energy band gap of 2.4 EV or more.
Owner:IDEMITSU KOSAN CO LTD

Printable conductive features and processes for making same

Processes for forming conductive features from one or more inks and conductive features formed from the processes. In one aspect, the process includes a step of applying a first ink comprising a metal precursor to at least a portion of a first substrate to form an at least partially coated substrate. In a second step, the first ink is contacted with a reducing agent, optionally derived from a second ink, under conditions effective to reduce the metal in the metal precursor to its elemental form.
Owner:CABOT CORP

Conductive adhesive agent with ultrafine particles

The present invention provides a conductive adhesive agent capable of being diluted with a solvent to give good coating workability and allowing formation of a conductive joint excellent in both thermal conductivity and electrical conductivity by inhibiting a gas generated when a binder resin is heat-cured after attachment of a part. The conductive adhesive agent according to the present invention is a conductive adhesive agent wherein, based on 100 parts by weight of silver powder having an average particle diameter of micrometers, which is used for a conductive medium, e.g. as a main component, 1 to 10 parts by weight of silver fine particles having an average particle diameter of nanometers is used in combination therewith and 5 to 15 parts by weight of thermosetting resin as a binder resin component and 10 parts or less by weight of solvent for adjustment of a fluid viscosity are blended therein as essential components, and by selection of such a blending ratio, generation of a gas component during heating and curing of the thermosetting resin to prevent formation of voids, and at the same time, fabrication of a conductive joint excellent in thermal conductivity and electrical conductivity is achieved.
Owner:HARIMA CHEM INC +1

Nano-structured anode compositions for lithium metal and lithium metal-air secondary batteries

This invention provides a nano-structured anode composition for a lithium metal cell. The composition comprises: (a) an integrated structure of electrically conductive nanometer-scaled filaments that are interconnected to form a porous network of electron-conducting paths comprising interconnected pores, wherein the nano-filaments have a transverse dimension less than 500 nm; and (b) micron- or nanometer-scaled particles of lithium, a lithium alloy, or a lithium-containing compound wherein at least one of the particles is surface-passivated or stabilized and the weight fraction of these particles is between 1% and 99% based on the total weight of these particles and the integrated structure together. Also provided is a lithium metal cell or battery, or lithium-air cell or battery, comprising such an anode. The battery exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Compositions Including Nano-Particles and a Nano-Structured Support Matrix and Methods of preparation as reversible high capacity anodes in energy storage systems

The present invention relates to compositions including nano-particles and a nano-structured support matrix, methods of their preparation and applications thereof. The compositions of the present invention are particularly suitable for use as anode material for lithium-ion rechargeable batteries. The nano-structured support matrix can include nanotubes, nanowires, nanorods, and mixtures thereof. The composition can further include a substrate on which the nano-structured support matrix is formed. The substrate can include a current collector material.
Owner:UNIVERSITY OF PITTSBURGH

Positive active material for lithium battery, method of preparing the same, and lithium battery including the same

A positive active material according to one embodiment of the present invention includes an internal bulk part and an external bulk part surrounding the internal bulk part and has a continuous concentration gradient of the metal composition from an interface between the internal bulk part and the external bulk part to the surface of the active material. The provided positive active material in which the metal composition is distributed in a continuous concentration gradient has excellent electrochemical characteristics such as a cycle life, capacity, and thermal stability.
Owner:IUCF HYU (IND UNIV COOP FOUNDATION HANYANG UNIV)

Electrically conducting and optically transparent nanowire networks

A network of nanowires has a plurality of interconnected nanowires. Each interconnected nanowire includes a metal in its composition. The network of nanowires is electrically conducting and substantially transparent to visible light. An electronic or electro-optic device has a network of nanowires. The network of nanowires has a plurality of interconnected nanowires, each interconnected nanowire including a metal in its composition. The network of nanowires is electrically conducting and substantially transparent to visible light. A metal-oxide nanowire has a metal oxide doped with a second metal in a composition thereof. The metal-oxide nanowire is electrically conducting and substantially transparent to visible light.
Owner:RGT UNIV OF CALIFORNIA

Silver nanoparticle ink composition

An ink composition comprises silver nanoparticles, hydrocarbon solvent, and an alcohol co-solvent. The ink composition is suitable for printing conductive lines that are uniform, smooth, and narrow on various substrate surfaces.
Owner:XEROX CORP

Thick Film Pastes For Fire Through Applications In Solar Cells

Formulations and methods of making solar cell contacts and cells therewith are disclosed. The invention provides a photovoltaic cell comprising a front contact, a back contact, and a rear contact. The back contact comprises, prior to firing, a passivating layer onto which is applied a paste, comprising aluminum, a glass component, wherein the aluminum paste comprises, aluminum, another optional metal, a glass component, and a vehicle. The back contact comprises, prior to firing, a passivating layer onto which is applied an aluminum paste, wherein the aluminum paste comprises aluminum, a glass component, and a vehicle.
Owner:HERAEUS PRECIOUS METALS NORTH AMERICA CONSHOHOCKEN

Additive for enhancing the performance of electrochemical cells

A lithium battery includes an electrolyte comprised of a non-aqueous solvent, and a salt mixture. The salt mixture includes an alkali metal electrolyte salt and an additive salt having an anion of a mixed anhydride of oxalic acid and boric acid. Specific additive salts include lithium bis(oxalato) borate and lithium oxalyldifluoroborate. Particular electrolyte salts comprise LiPF6 and LiBF4. The additive salt is present in an amount of 0.1–60 mole percent of the total of the additive salt and electrolyte salt content of the electrolyte. Also disclosed is a method for enhancing the performance characteristics of a lithium battery through the use of the electrolyte composition. Also disclosed is the compound lithium oxalyldifluoroborate.
Owner:ARMY US SEC THE

Anisotropic conductive adhesive and method for preparation thereof and an electronic apparatus using said adhesive

An anisotropic conductive adhesive contains conductive particles dispersed in a resin composition, wherein the resin composition includes a radical polymerization resin (A), an organic peroxide (B), a thermoplastic elastomer (C) and a phosphoric ester (D). The resin composition can further contain an epoxy silane coupling agent (E) represented by formula (2) or (3). The resin composition is mixed with other components after the radical polymerization resin (A), the thermoplastic elastomer (C), the phosphoric ester (D) and the epoxy silane coupling agent (E) are reacted. It is also possible to preliminarily react only the phosphoric ester (D) and the epoxy silane coupling agent (E) and to react the product of the preliminary reaction with the radical polymerization resin (A) and the thermoplastic elastomer (C), and then to add other components. The anisotropic conductive adhesive of the present invention can be used for electrical joining of electronic or electric parts of electrical apparatus.
Owner:SUMITOMO BAKELITE CO LTD

Thermal conductive material utilizing electrically conductive nanoparticles

Thermal interface compositions contain both non-electrically conductive micron-sized fillers and electrically conductive nanoparticles blended with a polymer matrix. Such compositions increase the bulk thermal conductivity of the polymer composites as well as decrease thermal interfacial resistances that exist between thermal interface materials and the corresponding mating surfaces. Such compositions are electrically non-conductive. Formulations containing nanoparticles also show less phase separation of micron-sized particles than formulations without nanoparticles.
Owner:GENERAL ELECTRIC CO

Homogeneous fluorassay methods employing fluorescent background rejection and water-soluble rare earth metal chelates

Homogeneous assays for determining quantitatively the extent of a specific binding reaction can be carried out effectively on very dilute solutions using measurements of fluorescence if a fluorescence measurement scheme that is capable of rejecting short-lived background fluorescence is employed and if the fluorescent group being measured has the following properties: a. the group being measured must be a rare earth metal chelate complex combination; b. the chelate must be water-soluble; c. the complex combination must also be stable in extremely dilute aqueous solutions, that is, the measured chelate must have at least one ligand having a metal-to-ligand binding constant of at least about 1013M-1 or greater and it must have a fluorescent emission that is long-lived compared to the longest decay lifetime of ambient substances and have a half life of from 0.01 to 50 msec.
Owner:EG&G WALLAC

Optoelectronic devices with organometal perovskites with mixed anions

The invention provides an optoelectronic device comprising a mixed-anion perovskite, wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions. The invention further provides a mixed halide perovskite of the formula (I) [A][B][X]3 wherein: [A] is at least one organic cation; [B] is at least one divalent metal cation; and [X] is said two or more different halide anions. In another aspect, the invention provides the use of a mixed-anion perovskite as a sensitizer in an optoelectronic device, wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions. The invention also provides a photosensitizing material for an optoelectronic device comprising a mixed-anion perovskite wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions.
Owner:OXFORD UNIV INNOVATION LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products