Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

3122results about How to "Small current" patented technology

Film-forming method, method of manufacturing semiconductor device, semiconductor device, method of manufacturing display device, and display device

Disclosed is a film-forming method, comprising supplying into a plasma processing chamber at least three kinds of gases including a silicon compound gas, an oxidizing gas, and a rare gas, the percentage of the partial pressure of the rare gas (Pr) based on the total pressure being not smaller than 85%, i.e., 85%≦Pr<100%, and generating a plasma within the plasma processing chamber so as to form a film of silicon oxide on a substrate to be processed.

Vertical Side Wall Active Pin Structures in a Phase Change Memory and Manufacturing Methods

A programmable resistor memory, such as a phase change memory, with a memory element comprising narrow vertical side wall active pins is described. The side wall active pins comprise a programmable resistive material, such as a phase change material. In a first aspect of the invention, a method of forming a memory cell is described which comprises forming a stack comprising a first electrode having a principal surface with a perimeter, an insulating layer overlying a portion of the principal surface of the first electrode, and a second electrode vertically separated from the first electrode and overlying the insulating layer. Side walls on the insulating layer and on the second electrode are positioned over the principle surface of the first electrode with a lateral offset from the perimeter of the first electrode.

Topology and control method for power factor correction

In a power factor corrected AC-to-DC power supply system, a DC-to-DC power converter is coupled to the output of an AC-to-DC power converter in order to produce a regulated DC output signal from a rectified AC input signal. The AC-to-DC power converter and the DC-to-DC power converter each includes a switch for controlling the operation of their respective power converter. The AC-to-DC converter includes an inductor. The system provides power factor correction for minimizing harmonic distortion by including a controller that receives the regulated DC output voltage as a feedback signal, and in response, produces a series of drive pulses having predetermined constant duty cycle. These pulses are simultaneously fed to each switch, to operate the respective converters alternately between ON and OFF states. When the AC-to-DC converter is driven by a fixed duty cycle of the series of pulses, power factor correction is improved since the current flowing through the inductor is substantially proportional to the waveform of the rectified AC input signal. By preselecting the value of the inductor, the AC-to-DC converter is operable in a discontinuous mode when the instantaneous rectified AC input signal is low and in a continuous mode when the instantaneous rectified AC input signal is high.

Spin hall effect magnetic apparatus, method and applications

An ST-MRAM structure, a method for fabricating the ST-MRAM structure and a method for operating an ST-MRAM device that results from the ST-MRAM structure each utilize a spin Hall effect base layer that contacts a magnetic free layer and effects a magnetic moment switching within the magnetic free layer as a result of a lateral switching current within the spin Hall effect base layer. This resulting ST-MRAM device uses an independent sense current and sense voltage through a magnetoresistive stack that includes a pinned layer, a non-magnetic spacer layer and the magnetic free layer which contacts the spin Hall effect base layer. Desirable non-magnetic conductor materials for the spin Hall effect base layer include certain types of tantalum materials and tungsten materials that have a spin diffusion length no greater than about five times the thickness of the spin Hall effect base layer and a spin Hall angle at least about 0.05.

Semiconductor device and manufacturing method thereof

Provided are a transistor which has electrical characteristics requisite for its purpose and uses an oxide semiconductor layer and a semiconductor device including the transistor. In the bottom-gate transistor in which at least a gate electrode layer, a gate insulating film, and the semiconductor layer are stacked in this order, an oxide semiconductor stacked layer including at least two oxide semiconductor layers whose energy gaps are different from each other is used as the semiconductor layer. Oxygen and / or a dopant may be added to the oxide semiconductor stacked layer.

Method for manufacturing semiconductor device

To improve productivity of a transistor that includes an oxide semiconductor and has good electrical characteristics. In a top-gate transistor including a gate insulating film and a gate electrode over an oxide semiconductor film, a metal film is formed over the oxide semiconductor film, oxygen is added to the metal film to form a metal oxide film, and the metal oxide film is used as a gate insulating film. After an oxide insulating film is formed over the oxide semiconductor film, a metal film may be formed over the oxide insulating film. Oxygen is added to the metal film to form a metal oxide film and added also to the oxide semiconductor film or the oxide insulating film.

High-frequency circuit, high-frequency device and communications apparatus

A high-frequency circuit for wireless communications selectively using a first frequency band and a second frequency band lower than the first frequency band, comprising an antenna terminal; first and second transmission terminals to which transmitting signals in the first and second frequency bands are input; first and second receiving terminals from which received signals in the first and second frequency bands are output; a diplexer circuit for branching a first-frequency-band-signal path and a second-frequency-band-signal path; a switch circuit for switching a path for a transmitting signal and a path for a received signal; a low-noise amplifier circuit disposed between the switch circuit and the second receiving terminal for amplifying a received signal in the second frequency band; and first and second filter circuits disposed between the antenna terminal and the low-noise amplifier circuit in this order from the antenna terminal, both filter circuits passing a received signal in the second frequency band but blocking a frequency band lower than the second frequency band, and the band blocked by the first filter circuit being lower than the band blocked by the second filter circuit.

Semiconductor device

An object of the present invention is to provide a semiconductor device having a novel structure in which in a data storing time, stored data can be stored even when power is not supplied, and there is no limitation on the number of writing. A semiconductor device includes a first transistor including a first source electrode and a first drain electrode; a first channel formation region for which an oxide semiconductor material is used and to which the first source electrode and the first drain electrode are electrically connected; a first gate insulating layer over the first channel formation region; and a first gate electrode over the first gate insulating layer. One of the first source electrode and the first drain electrode of the first transistor and one electrode of a capacitor are electrically connected to each other.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products