Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

522results about How to "Leakage current" patented technology

Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact and capacitor of semiconductor device using the same

A method of forming a metal nitride film using chemical vapor deposition (CVD), and a method of forming a metal contact and a semiconductor capacitor of a semiconductor device using the same, are provided. The method of forming a metal nitride film using chemical vapor deposition (CVD) in which a metal source and a nitrogen source are used as a precursor, includes the steps of inserting a semiconductor substrate into a deposition chamber, flowing the metal source into the deposition chamber, removing the metal source remaining in the deposition chamber by cutting off the inflow of the metal source and flowing a purge gas into the deposition chamber, cutting off the purge gas and flowing the nitrogen source into the deposition chamber to react with the metal source adsorbed on the semiconductor substrate, and removing the nitrogen source remaining in the deposition chamber by cutting off the inflow of the nitrogen source and flowing the purge gas into the deposition chamber. Accordingly, the metal nitride film having low resistivity and a low content of Cl even with excellent step coverage can be formed at a temperature of 500° C. or lower, and a semiconductor capacitor having excellent leakage current characteristics can be manufactured. Also, a deposition speed, approximately 20 A / cycle, is suitable for mass production.
Owner:SAMSUNG ELECTRONICS CO LTD

Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact and capacitor of semiconductor device using the same

A method of forming a metal nitride film using chemical vapor deposition (CVD), and a method of forming a metal contact and a semiconductor capacitor of a semiconductor device using the same, are provided. The method of forming a metal nitride film using chemical vapor deposition (CVD) in which a metal source and a nitrogen source are used as a precursor, includes the steps of inserting a semiconductor substrate into a deposition chamber, flowing the metal source into the deposition chamber, removing the metal source remaining in the deposition chamber by cutting off the inflow of the metal source and flowing a purge gas into the deposition chamber, cutting off the purge gas and flowing the nitrogen source into the deposition chamber to react with the metal source adsorbed on the semiconductor substrate, and removing the nitrogen source remaining in the deposition chamber by cutting off the inflow of the nitrogen source and flowing the purge gas into the deposition chamber. Accordingly, the metal nitride film having low resistivity and a low content of Cl even with excellent step coverage can be formed at a temperature of 500° C. or lower, and a semiconductor capacitor having excellent leakage current characteristics can be manufactured. Also, a deposition speed, approximately 20 A / cycle, is suitable for mass production.
Owner:SAMSUNG ELECTRONICS CO LTD

Thin film transistor array panel for a liquid crystal display and methods for manufacturing the same

A gate wire is formed on an insulating substrate by a photolithography process using the first mask, and a gate insulating layer and a semiconductor layer are sequentially deposited. Then, an ohmic contact layer made of silicide or microcrystallized and doped amorphous silicon is formed on the semiconductor layer. Then, a triple pattern including a gate insulating layer, a semiconductor layer and an ohmic contact layer are patterned at the same time by a photolithography process using the second mask. At this time, a contact hole exposing the gate pad is formed. An ITO layer and a metal layer are deposited and patterned to form a data wire, a pixel electrode, and a redundant gate pad by a photolithography process using the third mask. The ohmic contact layer, which is not covered with the ITO layer and the metal layer, is removed. A passivation layer is deposited and patterned by a photolithography process using the fourth mask. Next, the metal layer of the pixel electrode, the redundant gate pad, and the data pad, which is not covered with the passivation layer, is removed. At this time, the semiconductor layer that is not covered with the passivation layer is removed to separate the semiconductor layer under the neighboring the data lines.
Owner:SAMSUNG DISPLAY CO LTD

Gan semiconductor device

Provided is a GaN-based semiconductor light emitting device formed on a GaN single-crystal substrate and having a configuration capable of reducing a current leak.
A GaN-based semiconductor laser device (50) is disclosed as an example of the GaN-based semiconductor light emitting device, and it is a semiconductor laser device having a structure such that a p-side electrode and an n-side electrode are provided on a multilayer structure of GaN-based compound semiconductor layers. The GaN-based semiconductor laser device (50) is similar in configuration to a conventional GaN-based semiconductor laser device formed on a sapphire substrate except that a GaN single-crystal substrate (52) is used in place of the sapphire substrate and that the multilayer structure is directly formed on the GaN single-crystal substrate (52) without providing a GaN-ELO structure layer. The GaN single-crystal substrate (52) has continuous belt-shaped core portions (52a) each having a width of 10 μm. These core portions (52a) are spaced apart from each other by a distance of about 400 μm. A laser stripe (30), a pad metal (37) for the p-side electrode (36), and the n-side electrode (38) are provided on the multilayer structure in a region except the core portions (52a) of the GaN single-crystal substrate (52). The horizontal distance Sp between the pad metal (37) and the core portion (52a) adjacent thereto is 95 μm, and the horizontal distance Sn between the n-side electrode (38) and the core portion (52a) adjacent thereto is also 95 μm.
Owner:SONY CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products