Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1837results about How to "Reduce concentration" patented technology

Antibodies with modified affinity to fcrn that promote antigen clearance

An objective of the present invention is to provide methods for facilitating antigen-binding molecule-mediated antigen uptake into cells, methods for facilitating the reduction of antigen concentration in plasma, methods for increasing the number of antigens to which a single antigen-binding molecule can bind, methods for improving pharmacokinetics of antigen-binding molecules, antigen-binding molecules improved for facilitated antigen uptake into cells, antigen-binding molecules capable of facilitating the reduction of antigen concentration in plasma, antigen-binding molecules capable of repeatedly binding to antigens, antigen-binding molecules with improved pharmacokinetics, pharmaceutical compositions comprising such an antigen-binding molecule, and methods for producing those described above. The present inventors discovered that antigen uptake into cells is facilitated by an antibody having human FcRn-binding activity at the plasma pH and a lower antigen-binding activity at the early endosomal pH than at the plasma pH; such antibodies can increase the number of antigens to which a single antibody molecule can bind; the reduction of antigen in plasma can be facilitated by administering such an antibody; and antibody pharmacokinetics can be improved by using such antibodies.

Materials system for low cost, non wire-wound, miniature, multilayer magnetic circuit components

This invention describes materials system and processing conditions for manufacturing magnetic circuit components such as induction coils and transformers that are non wire-wound, miniature in size and, have a low manufacturing cost. The materials system of this invention is comprised of: (1) Low Temperature Cofire Ceramic (LTCC) tapes or thick film pastes of ferromagnetic ceramics with a 20 to 750 range of magnetic permeability to form the magnetic core of the components, (2) Thick film buried silver conductor paste to form the planar induction coils on individual magnetic layers, (3) Thick film via-fill silver conductor paste to interconnect two or more of the planar induction coils through the thickness of the magnetic layers, (4) Thick film silver solderable top layer conductor paste compatible with the ferrite and, (5) Thick film dielectric paste with low magnetic permeability to redirect the magnetic flux for enhancing the magnetic coupling coefficient and to insulate the silver conductors for enhancing the dielectric breakdown voltage. The key characteristics of the materials system of this invention that facilitate manufacture of low cost non wire-wound, miniature magnetic circuit components are: (1) Mutual compatibility essential for either of the techniques, the cofire technique or the sequential technique, used for manufacturing multilayer hybrid microelectronic components, (2) Complementary thermo-physical properties such as shrinkage and thermal expansion coefficient essential for manufacturing flat multilayer magnetic components, (3) Magnetic components with magnetic coupling coefficients greater than 0.95 under optimal processing conditions and, (4) Magnetic components with dielectric breakdown voltage greater than 500V/mil under optimal processing conditions.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products