Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

7689results about "Transmission path multiple use" patented technology

Multicarrier Sub-Layer for Direct Sequence Channel and Multiple-Access Coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and/or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Multicarrier sub-layer for direct sequence channel and multiple-access coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and / or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Software update method, apparatus and system

A system for remotely updating software on at least one electronic device connected to a network. The electronic devices have a non-volatile rewritable storage unit divided into at least two partitions, one of which will contain core firmware and the other of which will contain auxiliary software. When an update is received at the device, the updated core firmware is written to overwrite the partition in the rewritable storage unit that contained the auxiliary software. When this is completed and verified, the previous version of the core firmware stored in the storage unit is disabled from execution by the device. Next, the updated auxiliary software is written to overwrite the old version of the core firmware. When this write is complete, the device determines a suitable time for it to be rebooted to execute the updated software. In another embodiment, the present core firmware in the device is copied from the partition it is in to the other partition, overwriting the auxiliary software stored there. The new core firmware received to update the device is overwritten into the first partition, the old copied core firmware being present in case of an upgrade failure, and upon a successful update of the first partition, the auxiliary software is written to the second partition, overwriting the copied old core firmware. In this manner, the position of the core firmware and auxiliary software within the partitions is preserved during normal operation of the device.
Owner:WI LAN INC

System and method for acquiring data

A system for acquiring, and displaying, data such as physiological data, from a plurality of data connection devices, each of which monitor one or more different parameters and output data at different sampling frequencies based on their own system clocks. The system receives the data signals at different sampling frequencies and associates each sample of each signal with a time stamp derived from a single master clock. Low rate and high rate data are treated differently. Low rate data is associated with the current value of the master clock, where as high rate data is time stamped by giving the first sample a time stamp equal to the current value of the current master clock, subsequent samples being given an estimated time stamp based on the expected interval between samples derived from the sampling frequency of the data collection device, and the timescale given to the first example. The estimated time stamp may be periodically corrected, and the estimation calculation can be improved by correcting the value used for the interval between samples. The different signals can be displayed together on a display aligned with respect to a time axis. The system can display, the data in two different timescales, one showing a few seconds of data and one showing a few hours of data. The data traces are scrolled across the time axis, new data being added to one end of the trace.
Owner:ISIS INNOVATION LTD

Dynamic bandwidth allocation

InactiveUS7069577B2Prevents untoward spectral effectMore balancedError preventionModulated-carrier systemsFiberModem device
The communication system includes a hybride fiber / coax distribution network. A head end provides for downstream transmission of telephony and control data in a first frequency bandwidth over the hybrid fiber / coax distribution network and reception of upstream telephony and control data in a second frequency bandwidth over the hybrid fiber / coax distribution network. The head end includes head end multicarrier modem for modulating at least downstream telephony information on a plurality of orthogonal carriers in the first frequency bandwidth and demodulating at least upstream telephony information modulated on a plurality of orthogonal carriers in the second frequency bandwidth. The head end further includes a controller operatively connected to the head end multicarrier modem for controlling transmission of the downstream telephony information and downstream control data and for controlling receipt of the upstream control data and upstream telephony information. The system further includes service units, each service unit operatively connected to the hybrid fiber / coax distribution network for upstream transmission of telephony and control data in the second frequency bandwidth and for receipt of the downstream control data and telephony in the first frequency bandwidth. Each service unit includes a service unit multicarrier modem for modulating at least the upstream telephony information on at least one carrier orthogonal at the head end terminal to another carrier in the second frequency bandwidth and for demodulating at least downstream telephony information modulated on at least a band of a plurality of orthogonal carriers in the first frequency bandwidth. Each service unit also includes a controller operatively connected to the service unit multicarrier modem for controlling the modulation of and demodulation performed by the service unit multicarrier modem. A method of monitoring communication channels, a distributed loop method for adjusting transmission characteristics to allow for transmission of data in a multi-point to point communication system, a polyphase filter technique for providing ingress protection and a scanning method for identifying frequency bands to be used for transmission by service units are also included. Also provided is a method and apparatus for performing a Fast Fourier Transform (FFT). In one embodiment, a scalable FFT system is built using a novel dual-radix butterfly core.
Owner:HTC CORP

Data transfer and synchronization system

A system and method for synchronizing devices which can couple to the Internet, or any network. In one aspect a system for synchronizing data between a first system and a second system is provided. The system includes a first sync engine on the first system interfacing with data on the first system to provide difference information. A data store is coupled to network and in communication with the first and second systems. A second sync engine is provided on the second system coupled to receive the difference information from the data store via the network, and interfacing with data on the second system to update said data on the second system with said difference information. Difference information is transmitted to the data store by the first sync engine and received from the data store from the second sync engine. The system may include a management server coupled to the network and in communication with the first sync engine, the second sync engine and the data store. The system may include a plurality of sync engines on a respective plurality of systems, each of said plurality of engines being coupled to receive difference information from each of said first, second and plurality of sync engines from the data store via the network. Each said engine interfaces with data on the system on which it resides to update said data on said system on which it resides with said difference information, and interfaces with data on said system on which it resides to provide difference data information from the system on which it resides to the data store. In a further embodiment, the invention comprises a method for synchronizing at least a first file and a second file resident on a first and a second systems, respectively, coupled to the Internet, respectively. The method includes the steps of: determining difference data resulting from changes to the first file on the first system; transmitting the difference data to a server via the Internet; querying the server from a second system to determine whether difference data exists for files on the second system; retrieving the difference data to the second system; and updating the second file on the second system with the difference data.
Owner:SYNCHRONOSS TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products