Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

3078results about "Transmission path multiple use" patented technology

Multicarrier Sub-Layer for Direct Sequence Channel and Multiple-Access Coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and/or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.

System and method for acquiring data

A system for acquiring, and displaying, data such as physiological data, from a plurality of data connection devices, each of which monitor one or more different parameters and output data at different sampling frequencies based on their own system clocks. The system receives the data signals at different sampling frequencies and associates each sample of each signal with a time stamp derived from a single master clock. Low rate and high rate data are treated differently. Low rate data is associated with the current value of the master clock, where as high rate data is time stamped by giving the first sample a time stamp equal to the current value of the current master clock, subsequent samples being given an estimated time stamp based on the expected interval between samples derived from the sampling frequency of the data collection device, and the timescale given to the first example. The estimated time stamp may be periodically corrected, and the estimation calculation can be improved by correcting the value used for the interval between samples. The different signals can be displayed together on a display aligned with respect to a time axis. The system can display, the data in two different timescales, one showing a few seconds of data and one showing a few hours of data. The data traces are scrolled across the time axis, new data being added to one end of the trace.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products