Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

178 results about "Frequency separation" patented technology

Frequency separation is a term used in Helio and Asteroseismology for the spacing in frequency between adjacent modes of oscillation having the same angular degree (l) but different radial order (n). For a Sun-like star the frequency can be further described using the 'large frequency spacing' between modes of different radial order (136 μHz in the Sun), and the 'small frequency spacing' between modes of even and odd angular degree within the same radial order (9.0 μHz in the Sun). The period corresponding to the large frequency spacing can be shown to be approximately the same as the time required for a sound wave to travel to the centre of the Sun and return, confirming the global nature of the oscillations seen.

Method and system for continuous monitoring and diagnosis of body sounds

A method and system is invented for automated continuous monitoring and real-time analysis of body sounds. The system embodies a multi-sensor data acquisition system to measure body sounds continuously. The sound signal processing functions utilize a unique signal separation and noise removal methodology by which authentic body sounds can be extracted from cross-talk signals and in noisy environments, even when signals and noises may have similar frequency components or statistically dependent. This method and system combines traditional noise canceling methods with the unique advantages of rhythmic features in body sounds. By employing a multi-sensor system, the method and system perform cyclic system reconfiguration, time-shared blind identification and adaptive noise cancellation with recursion from cycle to cycle. Since no frequency separation or signal/noise independence is required, this invention can provide a robust and reliable capability of noise reduction, complementing the traditional methods. The invention further includes a novel method by which pattern recognition of groups of key parameters can be used to diagnosis physical conditions associated with body sounds, with confidence intervals on the diagnostic criterion to indicate accuracy of diagnosis.
Owner:WANG LE YI +1

High-performance coherent high-frequency radar multi-frequency detection method

The present invention provides a high-performance coherent high-frequency radar multi-frequency detection method. The method comprises the steps of 1) assigning the frequency values of a plurality of frequencies and an observation wave beam of each frequency, and according to the direction of the observation wave beam, determining the phase shift increment of each frequency to thereby design an emission signal of each channel of a radar emitter; designing a calibration signal, obtaining an inconsistency error between emission channels and an inconsistency error between reception channels, namely, an amplitude error and a phase error, by taking a first channel as the reference; utilizing the inconsistency error between the emission channels to carry out the amplitude compensation and the phase compensation on the emission signals to thereby correct the inconsistency between the emission channels; 2) using the emitter to filter and amplify the compensated emission signals, and then using an antenna to emit the signals out; then, using the antenna and a radar receiver to receive the echoes of the signals; 3) carrying out the frequency separation on the echo digital signals, and utilizing the inconsistency error between the emission channels obtained in the step 1 to compensate the amplitude and the phase to thereby obtain the radar echo data.
Owner:NAT SPACE SCI CENT CAS

Regular linear interference suppressing method based on polynomial fitting

The invention provides a regular linear interference suppressing method based on polynomial fitting, comprising the following steps of: (a) artificially recognizing an apparent velocity range of regular linear interferences; (b) performing frequency separation processing on the acquired seismic data through wavelet transform, thereby obtaining low frequency data and high frequency data; (c) determining an apparent dip range of noise data according to the apparent velocity range of the noise data, performing optimal mid-value scanning of apparent dips, and determining the optimal direction of the regular linear interference at the current apparent dip; (d) performing polynomial fitting on the noise data in the optimal direction of the regular linear interference; (e) repeating the steps (c) and (d) until all regular linear interferences in the low frequency data are fitted out; (f) reducing the fitted regular interference data from the original low frequency data obtained through frequency separation, thereby obtaining low frequency data after the regular interference is suppressed; and (g) obtaining the seismic data after the noise is suppressed according to a polynomial fitting rule from the low frequency data after the regular interference is suppressed and the original high frequency data after frequency separation.
Owner:BC P INC CHINA NAT PETROLEUM CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products