Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

580results about How to "Accurate reconstruction" patented technology

Method for representing real-time motion

A system 100 for tracking the movement of multiple objects within a predefined area using a continuation of overhead X-Y tracking cameras 24 with attached frequency selective filter 24f. Also employed are perspective Z filming cameras sets 30. Objects to be tracked, such as player 17, have been marked to include some form of frequency selective reflective material such as an ink. Typical markers include patches 7r and 7l, sticker 9 and tape 4a as well as additional body joint markers 17af through 17l. System 100 radiates selected energy 23a throughout the predefined area of tracking that is specifically chosen to reflect off said reflective materials used to mark for instance player 17. The reflected energy is then received by tracking cameras 24 while all other ambient light is blocked by filter 24f. Local Computer System 60 continuously captures images from said tracking cameras 24 which include only the minimum information created by said reflected energy. System 60 efficiently locates said markings on said multiple objects and uses this location information to determine for each marking its angle of rotation, angle of azimuth and distance from a designated origin 17o local to player 17. Local origin 17o is then expressed as a three-dimensional coordinate with respect to the origin of the playing venue 2a. The continuous stream of tracked three-dimensional coordinates, defining the body joints on players such as 17, is then transmitted to a remote computer where it can be used to drive a graphic re-animation of the object movement. Along with this re-animation, additional performance measurements may be derived from the continuous stream and automatically made available in real-time.
Owner:MAXX HLDG

Methods of precisely forming bone tunnels in cruciate ligament reconstruction of the knee

A femoral guide for precisely positioning a guide wire on a bone surface of the femur includes a body having a lumen for receiving a guide wire and a tongue protruding from the body for engaging an edge or reference point on the bone surface with the tongue being spaced a predetermined distance from a longitudinal axis of the lumen. The lumen includes an opening allowing a guide wire extending through the lumen to contact the bone surface at a location spaced from the edge substantially the predetermined distance with the tongue engaging the edge. A stylus on the body can be driven into the bone to secure and stabilize the femoral guide prior to driving the guide wire into the bone through the lumen. With the guide wire driven into the bone, a bone tunnel can be formed substantially concentrically or coaxially along the guide wire such that a longitudinal axis of the bone tunnel will be disposed from the edge substantially the predetermined distance. Methods of precisely forming bone tunnels include the steps of engaging an edge of a bone surface with a tongue of the femoral guide, inserting a guide wire through a lumen of the femoral guide, driving the guide wire into the bone through the lumen and forming a bone tunnel in the bone along the guide wire such that a longitudinal axis of the bone tunnel will be disposed from the edge engaged by the tongue a distance substantially equal to the distance that the tongue is disposed from a longitudinal axis of the lumen.
Owner:MCGUIRE DAVID A +1

Multimode autofluorescence tomography molecule image instrument and rebuilding method

The invention discloses a multi-modality autofluorescence molecular tomographic imaging instrument, comprising a signal gathering module, a signal preprocessing module, a system control module, and a signal post-processing module. The method of the invention comprises determining the feasible region of light source through X-ray imaging and autofluorescence tomographic imaging based on multi-stage adaptive finite element combined with digital mouse, reconstruction target area optical characteristic parameter, and modality fusion, and adaptive optimized factorization for partial texture according to the posterior error estimation to obtain the fluorescence light source in reconstruction target area. The morbidity problem of autofluorescence molecular tomographic image can be efficiently solved, and the precise reconstruction of the autofluorescence light source can be carried out in the complicated reconstruction target area by the multi-modality fusion imaging mode of the autofluorescence molecular tomographic imaging. The precise reconstruction of the autofluorescence light source can be finished by the liquid nitrogen cooling CCD probe, multi-angle fluorescence probe technology, and multi-modality fusion technology, and the autofluorescence molecular tomographic imaging algorithm based on multi-stage adaptive finite element with the non-uniformity characteristics of the reconstruction target area.
Owner:INST OF AUTOMATION CHINESE ACAD OF SCI

Super-resolution imaging system based on compression coding aperture and imaging method thereof

The invention discloses a super-resolution imaging system based on a compression coding aperture and an imaging method thereof, mainly solving a problem of expensive imaging cost in the prior art. The method comprises the following steps: designing a convolution template, and making a coding aperture according to coherence of a light source; placing the prepared coding aperture at a position of aperture diaphragm in an optical system and pressing a shutter for imaging, and obtaining a low resolution coding image; transmitting the coding image to a master control computer, decoding super-resolution to reconstruct a high-resolution image, and using a denoising algorithm to remove an artificial trace in the high-resolution image. The system and the method are characterized in that: restriction of a Nyquist criterion is broken through, low frequency sampling is carried out on a scene, the high-resolution image is obtained through super-resolution reconstruction, data waste caused by first sampling and second compression of a traditional imaging system is overcome, in sampling, data volume is compressed, imaging cost, compression cost and transmission cost are reduced, and the system and the method can be used for infrared imaging and remote sensing imaging technology.
Owner:XIDIAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products