Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

984 results about "Frequency compensation" patented technology

In electronics engineering, frequency compensation is a technique used in amplifiers, and especially in amplifiers employing negative feedback. It usually has two primary goals: To avoid the unintentional creation of positive feedback, which will cause the amplifier to oscillate, and to control overshoot and ringing in the amplifier's step response. It is also used extensively to improve the bandwidth of single pole systems.

High-sensitivity satellite navigation signal capturing method and system

The invention discloses a high-sensitivity satellite navigation signal capturing method and a system. The system comprises a digital down-conversion module, an average sampling and block accumulation module, an FFT (fast Fourier transform) module, a circumference shifting module, a local PRN (pseudo random noise) code FFT conjugate memory, a complex multiplier module, an IFFT (inverse fast Fourier transform) module, a differential coherence integration module, a peak detection module and a sequential control module. The digital down-conversion module realizes digital down-conversion operation for satellite digital intermediate frequency signals; the average sampling and block accumulation module averagely samples satellite data and completes a block accumulation function; the FFT module searches code phase frequency domains; the circumference shifting module utilizes Doppler circumference shifting search to replace frequency compensation; the local PRN code FFT conjugate memory stores a local PRN code FFT conjugate result; the complex multiplier module realizes signal de-spreading; the IFFT module calculates different code phase coherence results; the differential coherence integration module accumulates differential coherence energy of de-spread satellite signals; the peak detection module realizes signal capturing output; and the sequential control module controls timing sequence of the various modules of the system. Weak signal capturing speed and sensitivity of a satellite navigation receiver are improved, and parameters can be configured flexibly.
Owner:JINAN UNIVERSITY

Self-adaption zero-frequency compensation circuit in low-voltage difference linear voltage regulator

The invention relates to a self-adaption zero-frequency compensation circuit in a low-voltage difference linear voltage regulator. The output end of a transconductance amplifier is connected with a voltage regulation pipe by a voltage bumper, a current detection circuit is connected with the voltage bumper and the common end of the voltage regulation pipe, and the other end is connected with a variable-resistance circuit connected with the compensation end of the transconductance amplifier. In the invention, when a load is higher and current is lower, the current detection circuit can detect the load and the current and the load and the current act on the variable-resistance circuit at the moment to ensure that the resistance is enlarged, and the zero position is also relatively lower; on the contrary, when the load is reduced and the current is enlarged, the resistance value of the variable-resistance circuit is reduced, and the zero position is higher. Therefore, the self-adaption zero can change along with the change of a pole so that the compensation circuit takes the effect of compensation and effectively ensures the stable state of system operation. The compensation circuit successfully solves the problem of poor stability of a low-voltage difference linear voltage regulator so that a load capacitance equivalent series resistance is not really important to the influence on system stability, transient response and ripple waves.
Owner:江西芯世达微电子有限公司

High-bandwidth low-power consumption frequency-compensation three-stage operational amplifier

The invention belongs to the technical field of analog IC (Integrated Circuit) design, in particular to a high-bandwidth low-power consumption frequency-compensation three-stage operational amplifier. The amplifier comprises an input stage, a second stage, an output stage, a common mode feedback stage, a comprehension circuit, an internal feedforward circuit, wherein the second stage is connectedwith the input stage, the output stage is connected with the second stage and used for amplifying a signal output by the second stage and driving an external load circuit, the common mode feedback stage extracts the common mode level of the differential output stage and stabilizes the common mode level, the comprehension circuit comprises a traditional trsanscondutance comprehension circuit, a miller comprehension circuit and a resistor for separating a high-frequency zero pole, and the internal feedforward circuit is used for comprehending an internal additional pole and forming a push-pull circuit together with the output stage to reduce static power consumption. The three-stage operational amplifier realizes high gain, high bandwidth and high stability under the condition of little DC power consumption and can be used in a high-speed analog-digital conversion circuit, such as a sigma-delta modulator suitable for the bandwidth of an LTE (Line Terminator Equipment) wireless communication protocol.
Owner:FUDAN UNIV

Method for compensating common mode feedback circuit frequency of two-stage amplifier

The invention discloses a common-mode feedback circuit frequency compensation method of a dual-stage amplifier, which belongs to the analog integrated circuit design field. One common-mode feedback circuit is adopted in the dual-stage amplifier to reduce the area and the power consumption of the feedback circuit; the dual-stage amplifier adopts a fully-differential input/output structure; a differential output terminal is used for sampling the common-mode output level; a first-stage amplifying circuit thereof comprises a controllable biasing circuit; a common-mode feedback control signal controls the first-stage common-mode output level and the second-stage common-mode output level of the amplifier at the same time through the controllable biasing circuit; a feedback amplifier is realized by adopting a dual-stage operational amplifier with miller compensation. The left half plane zero point generated by the feedback amplifier in a loop circuit counteracts a certain left half plane pole in a prime amplifier, thereby forming a stable compensation loop circuit. The common-mode feedback circuit frequency compensation method has the advantages of less feedback circuit elements, lower feedback circuit power consumption, high low-frequency loop gain and better compensation phase margin.
Owner:RESEARCH INSTITUTE OF TSINGHUA UNIVERSITY IN SHENZHEN

Band-gap reference source with high power supply restraint

There is a sort of reference source which has the crack by checking the high electrical source, and it consists of the self-polarization circuit, the regulating circuit, the kernel circuit which has the crack, and the startup circuit. The IPTAT generating circuit of the kernel circuit which has the crack makes the collector current of the Q1 and Q2 of the NPN pipe to equal by that the degenerative feedback which is magnified adjusts its quiescent point, the IPTAT current and the VBE of the Q8 of the NPN transistor which has the negative temperature coefficient in the constant-current circuit are progressed the first compensation of the temperature, at the same time they debase the temperature coefficient. The constant-current circuit produces the polarization by itself, and provides the polarization current to the IPTAT generating current. The operational amplifier circuit advances the plus for the two-stage operational amplifier, the compensation current progresses the frequency compensation for the two-stage operational amplifier. The generating circuit removes the dependency of the reference export VREF to supply voltage by negative feedback effect in order advance the PSRR. The startup circuit removes the degeneration polarization point and it drives the self-polarization circuit to work. The self-polarization circuit provides the polarization voltage for the regulating circuit. The circuit configuration of this invention is simple and new, it does not need the external polarization, the area of this circuit is small, and it has the good temperature coefficient.
Owner:HUAZHONG UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products