Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

653 results about "Doppler effect" patented technology

The Doppler effect (or the Doppler shift) is the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who described the phenomenon in 1842.

Biometric piezo scanner

A piezoelectric thin film sensor array is used to scan and capture biometric data, for example, a fingerprint image. In one embodiment, a multi-layer structure includes a PVDF layer in between two conductor grids arranged orthogonally to one another. Urethane can be added to one side where a finger is placed. A foam substrate can be used as a support. In one feature, the PVDF, and grids can be peeled off like a label for easy replacement. Multiplexers are switched to scan the sensor. A single pixel or a group of pixels can be detected and output to an image memory. The presence of a fingerprint ridge is detected by virtue of a ring-down oscillation that arises from reflection when an electric field is applied to the piezoelectric thin film sensor array at a pixel in contact with the fingerprint ridge. For example, such a ring-down value associated with a fingerprint ridge can be detected at about 150 ns. (or 5 cycles at 30 MHZ). Other reflections indicative of additional biometrics (e.g. from tissue, blood, bone, fingernail, etc.) can also be detected. A Doppler effect due to reflections from circulating blood can also be detected. Such a Doppler effect can provide further information about direction and speed of blood circulation. An instantaneous pyroelectric effect can also be detected to indicate a live finger presence.
Owner:SONAVATION INC

Double-frequency grating interferometer displacement measurement system

The invention discloses a double-frequency grating interferometer displacement measurement system. The system comprises a double-frequency laser device, an interferometer, a measuring grating and an electrical signal processing portion. The measurement system achieves displacement measurement based on optical grating diffraction, the optical doppler principle and an optical beat frequency principle. The double-frequency laser device transmits double-frequency laser, the laser is divided into reference light and measuring light through a polarizing beam splitter, the measuring light transmits into a position of the measuring grating, positive and negative first-order diffraction occurs, diffraction light and the reference light form a beat frequency signal which contains displacement information in two directions at the position of a light detection unit, and linear displacement output is achieved through signal processing. According to the system, the sub-nanometer-grade or even higher grade of resolution ratio and accuracy can be achieved, and horizontal large-stroke displacement and horizontal displacement can be measured at the same time. The system has the advantages of being insensitive to the environment, high in measuring accuracy, small in volume and light in weight. The system serves as a lithography machine ultraprecise workpiece platform position measurement system, the comprehensive performance of the workpiece platform can be improved.
Owner:TSINGHUA UNIV +1

Methods and devices for determining the resonance frequency of passive mechanical resonators

Methods and systems for determining the resonance frequency of a resonator, using the Doppler effect. An interrogating sonic beam including a carrier frequency and one or more resonator exciting frequencies is directed at a resonator disposed in a measurement environment. Resonator vibrations are excited by the resonator exciting frequencies. The carrier frequency is modulated by the vibrating part(s) of the resonator. The returning signal is received and analyzed to determine the amplitude of the Doppler shifted sideband frequencies. The resulting data is processed to determine the resonator's resonance frequency. Using calibrated resonating sensors having a resonance frequency that varies as a function of a physical parameter in a measurement environment, the method and systems allow determining the value of the physical variable from the sensor's resonance frequency. The methods and systems may be used, inter alia, to determine intraluminal blood pressure in various parts of a cardiovascular system, the pressure of intra-cranial fluids, the pressure of fluids in various bodily cavities by using implantable calibratable resonating pressure sensors. The methods and systems may also be used for determining the pressure in various industrial measurement environments and enclosures. Methods and systems are provided for detecting the sensor and for centering the interrogating beam on the sensor.
Owner:MICROTECH MEDICAL TECH

Onboard automatic speed measuring and height measuring radar system and speed measuring and height measuring method

The invention discloses an onboard automatic speed measuring and height measuring radar system and a speed measuring and height measuring method. The system comprises an antenna, a transmitter, a superhet receiver, a broadband digital intermediate-frequency receiver, a center computer and a power module. The transmitter generates four sawtooth wave linear frequency modulation radio-frequency signals and achieves space symmetric configuration through the antenna; the superhet receiver and the broadband digital intermediate-frequency receiver complete echo signal digital demodulation together and calculate the frequency, amplitude, phase and signal-to-noise ratio information of echo signals; the center computer separates the speed information and the height information of the same echo beam by applying Doppler principle directivity based on the space symmetry and the timing sequence relevance of four beams, and the information is used for calculating the flight speed value and the flight height value of an aircraft. According to the onboard automatic speed measuring and height measuring radar system and the speed measuring and height measuring method, the same radar can be used for automatically measuring the speed and the height, the structure of an aircraft avionics system is simplified, the measuring precision is high, and the onboard automatic speed measuring and height measuring radar system and the speed measuring and height measuring method can be used for measuring carrier aircraft flight parameters.
Owner:SHAANXI CHANGLING ELECTRONICS TECH

Biometric piezo scanner

A piezoelectric thin film sensor array is used to scan and capture biometric data, for example, a fingerprint image. In one embodiment, a multi-layer structure includes a PVDF layer in between two conductor grids arranged orthogonally to one another. Urethane can be added to one side where a finger is placed. A foam substrate can be used as a support. In one feature, the PVDF, and grids can be peeled off like a label for easy replacement. Multiplexers are switched to scan the sensor. A single pixel or a group of pixels can be detected and output to an image memory. The presence of a fingerprint ridge is detected by virtue of a ring-down oscillation that arises from reflection when an electric field is applied to the piezoelectric thin film sensor array at a pixel in contact with the fingerprint ridge. For example, such a ring-down value associated with a fingerprint ridge can be detected at about 150 ns. (or 5 cycles at 30 MHZ). Other reflections indicative of additional biometrics (e.g. from tissue, blood, bone, fingernail, etc.) can also be detected. A Doppler effect due to reflections from circulating blood can also be detected. Such a Doppler effect can provide further information about direction and speed of blood circulation. An instantaneous pyroelectric effect can also be detected to indicate a live finger presence.
Owner:SONAVATION INC

Doppler radar-based non-contact type vibration measuring method

The invention discloses a Doppler radar-based non-contact type vibration measuring method. The method includes the following steps: S1. directly facing a measured vibration object to emit single-frequency microwaves in the form of continuous waves, and receiving radar echoes after modulation by vibration motion; S2. performing amplifying, filtering and quadrature mixing on echo signals and taking down conversion signals to obtain two paths of baseband signals I(t) and Q(t); S3. performing data collection on the baseband signals to obtain discrete digital signals; and S4. performing phase demodulation processing on the discrete baseband signal I[n] and Q[n], and extracting vibration amplitude and frequency information. The Doppler radar-based non-contact type vibration measuring method provided by the invention uses a microwave radar to perform non-contact type vibration measurement based on a Doppler effect, has good low frequency measurement sensitivity, is high in environmental adaptation, and can perform accurate vibration measurement under the condition of containing a barrier. The microwave radar used by the method is compact in structure and low in cost and has relatively low power consumption, thereby providing a solution to integration of a large-scale vibration measuring system.
Owner:SHANGHAI JIAO TONG UNIV

Doppler factor estimation and compensation method of mobile underwater acoustic communication

The invention discloses a Doppler factor estimation and compensation method of mobile underwater acoustic communication, related to underwater acoustic communication. The Doppler factor estimation andcompensation method of the mobile underwater acoustic communication comprises the following steps: 1) large scale Doppler estimation and compensation; 2) residual Doppler estimation and compensation;and 3) Doppler phase rotation compensation. In order to accurately and efficiently estimate the Doppler factor in the mobile underwater acoustic communication environment, overcome the more obvious Doppler effect compared with the terrestrial radio channel and eliminate the adverse effects on the underwater acoustic OFDM communication system of the Doppler effect, a Doppler factor estimation andcompensation method of the mobile underwater acoustic communication considering both the accuracy and the computationcomplexity is needed. Because the estimation is carried out in the frequency domainand aims at the characteristics of the underwater acoustic channel, the Doppler factor estimation and compensation method of the mobile underwater acoustic communication, especially the Doppler factor estimation and compensation method applied to the mobile underwater acoustic OFDM system is more suitable for the fast changing mobile underwater acoustic channel based on the traditional Doppler estimation and compensation. The estimation accuracy is high; and meanwhile, the computation complexity is reduced appropriately, therefore, the practicability is excellent.
Owner:XIAMEN UNIV

Two-degree-of-freedom heterodyne grating interferometer displacement measurement system and method

The invention provides a two-degree-of-freedom heterodyne grating interferometer displacement measurement system and method. The system comprises a double-frequency laser device, a grating interferometer, a measuring grating, a receiver and a signal processing unit. The grating interferometer comprises a lateral displacement light splitting prism, a polarization light splitting prism, a 1/4 wave plate, a reflecting mirror and an optical fiber coupler. The method realizes displacement measurement based on grating diffraction, the optical Doppler effect and the optical-beat frequency principle. Laser of the double-frequency laser device is incident to the interferometer and the measuring grating and then optical signals are outputted to the signal processing unit. When the interferometer and the measuring grating perform two-degree-of-freedom linear relative movement, the system can output two linear displacements; the measurement system adopts Littrow incident conditions, a measurement target has large passive movement tolerance and two linear displacements can be measured simultaneously so that precision can reach the nanoscale and higher scale; and the measurement system has advantages of short light path, small size, compact structure, low weight and low requirement for the measuring grating and is suitable for two-degree-of-freedom high-precision long-stroke displacement measurement.
Owner:TSINGHUA UNIV +1

Two-DOF (degree of freedom) heterodyne grating interferometer displacement measurement system

A two-DOF (degree of freedom) heterodyne grating interferometer displacement measurement system comprises a two-frequency laser, a grating interferometer, a measuring grating, a receiver, and an electronic signal processing part. The grating interferometer comprises a polarizing beam splitter, a reference grating and a refraction element. The measurement system measures displacement according to optical grating diffraction, optical Doppler Effect and optical beat frequency principle. A two-frequency laser beam emitted by the two-frequency laser enter the grating interferometer and the measuring grating before two light signals are output to the receiver, and the signals are sent to the electronic signal processing part. When the grating interferometer is in two-DOF linear relative motion with the measuring grating, the system can output two linear displacements. The measurement system allows for sub-nano or higher resolution and precision, and can measure two linear displacements simultaneously. The measurement system has the advantages of insensitivity to environment, high measurement precision, small size, light weight and the like, and after the measurement system is used as a lithography machine ultra-precision workpiece bench position measurement system, comprehensive performances of a workpiece bench can be improved.
Owner:TSINGHUA UNIV +1

Multi-laser-beam heterodyne micro-impulse-measuring device and method

The invention discloses a multi-laser-beam heterodyne micro-impulse-measuring device and a multi-laser-beam heterodyne micro-impulse-measuring method and relates to the technical field of micro impulse detection. By the device and the method, the problems of low energy coupling efficiency and big system error in the current small-impulse-measuring system are solved and the micro impulse measurement is carried out on the basis of a laser heterodyne technology and a Doppler effect. The method comprises the steps of: converting the micro impulse generated under the action of the laser and a target into a rotating angle of a torsional pendulum; then introducing a scanner into the measuring light path to attach an optical frequency to each of the light signals entering at different time points, so that a reflected light from the front surface of a planer standard lens and a transmitted light reflected by the front surface and the back surface of the planer standard lens for many times generate a multi-beam heterodyne interfering signal under an interfering condition; and thus modulating the change information of the rotating angle of a standard beam into the frequency difference of a medium-frequency heterodyne signal successfully. With polyvinyl chloride (PVC) and 2 percent of carbon (C) as working fluid, the micro impulse generated under the action of the laser and the working fluid is simulatively measured by using a torsional pendulum method and the measurement result shows that the maximum relative error of the measurement is less than 2.3 percent.
Owner:HARBIN INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products