Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

4550results about "Bus networks" patented technology

Device communication and control in a home network connected to an external network

A method for providing user interfaces in a first network including first devices interconnected via a communication medium and an interface device connecting the first network to a second network having interconnected second devices providing services. The user interfaces are for controlling the devices that are currently connected to the first network and communication with devices that are currently connected to the second network. The method includes: (a) obtaining information from first devices currently connected to the first network, the information including device information; (b) obtaining information from second devices via the interface device, about the services of second devices connected to the second network; (c) generating a user interface description in one or more of the first devices based on the obtained information. The user interface description in each first device includes: (1) a reference associated with the device information of each of the first devices, and (2) a reference associated with the service information of each of the second devices. A user interface is displayed based on each user interface description on a device connected to the first network capable of displaying a user interface, for user control of the first devices and communication with the second devices. Displaying each user interface is based on using each reference in the corresponding user interface description to access the associated information in each device; generating the user interface including device and service corresponding to each device using the accessed information in each device; and displaying the user interface.

Video recording device including the ability to concurrently record and playback

A video recording device includes the ability to record a video broadcast or video program while concurrently replaying a previously recorded video broadcast. This previously recorded video broadcast can be the same video broadcast that is recording or a different video broadcast. The record and playback operations are preferably triggered and controlled through a television on which the user can watch the playback of the recorded program. The viewer enters the data and commands for recording and playback preferably using a remote control device. Video programs are preferably recorded on a mass storage device. Preferably, the mass storage device is a hard disk drive coupled to the television through an IEEE 1394 serial bus network. Alternatively, any other appropriately configured memory device can be used to store the video programs. The television uses write commands to transmit to and record the program onto the mass storage device and read commands to retrieve previously recorded portions of a program to be replayed from the mass storage device. When playing back a previously recorded program or the recorded portions of a program which is still being recorded, the television will retrieve the packets of data from the mass storage device in sequence, using read commands to read from the appropriate locations where the appropriate packets have been stored. Each packet is then retrieved in sequence from the beginning of the program, even if the end portion of the program is still being recorded.
Owner:SONY CORP +1

Long-distance automatic displacement and density automatic control system

PendingCN107605427ARealize remote automatic centralized controlRealize the centralized control of the whole processClosed circuit television systemsPump controlAutomatic controlControl system
The invention belongs to the field of oil equipment, and particularly relates to full-automatic intelligent remote-control cementing equipment. A long-distance automatic displacement and density automatic control system being used for the cementing equipment is characterized in that the long-distance automatic displacement and density automatic control system at least comprises a power unit and acontrol unit. The power unit comprises an engine, a gearbox and a plunger pump, and the control unit comprises a device operation screen, a device PLC processor, a remote-control operation screen, a remote-control PLC processor and an Anybus module. Operating personnel write in a set displacement set value or a set density value on the remote-control operation screen or the device operation screen, after the device PLC processor reads the set displacement information, a set gear needed by the current set displacement and the accelerator position are calculated through program internal calculation, so that the rotating speed of the engine and the gears of the gearbox are controlled, finally the long-distance automatic displacement and density automatic control system is used for controllingthe input rotating speed of the plunger pump, and the purpose of controlling the discharging displacement of the plunger pump is achieved.

Method and apparatus for a multi-gigabit ethernet architecture

An Ethernet architecture is provided for connecting a computer system or other network entity to a dedicated Ethernet network medium. The network interface enables the transmission and receipt of data by striping individual Ethernet frames across a plurality of logical channels and may thus operate at substantially the sum of the individual channel rates. Each channel may be conveyed by a separate conductor (e.g., in a bundle) or the channels may be carried simultaneously on a shared medium (e.g., an electrical or optical conductor that employs a form of multiplexing). On a sending station, a distributor within the sender's network interface receives Ethernet frames (e.g., from a MAC) and distributes frame bytes in a round-robin fashion on the plurality of channels. Each “mini-frame” is separately framed and encoded for transmission across its channel. On a receiving station, the receiver's network interface includes a collector for collecting the multiple mini-frames (e.g., after decoding) and reconstructing the frame's byte stream (e.g., for transfer to the receiver's MAC). The first and last bytes of each frame and mini-frame are marked for ease of recognition. Multiple unique idle symbols may be employed for transmission during inter-packet gaps to facilitate the collector's synchronization of the multiple channels and/or enhance error detection. A maximum channel skew is specified, and each received channel may be buffered with an elasticity that is proportional to the maximum skew so that significant propagation delay may be encountered between channels without disrupting communications.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products