Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

486 results about "Handover procedure" patented technology

Handover Procedures. Handover procedures are a key function of LTE eNBs. They are intended to reduce interruption time compared to the circuit-switched handover process in 2G networks. Thoroughly evaluating the performance of LTE eNBs requires testing multiple handover procedures, shown in the table below.

Efficient Handover of Media Communications in Heterogeneous IP Networks using LAN Profiles and Network Handover Rules

Methods and systems are provided for efficient handover of a media session between heterogeneous IP networks. A mobile device with Internet access can operate a software program to communicate with a corresponding node. The corresponding node may access the Internet through either a NAT router or a firewall. The mobile device establishes a media session with a corresponding node via the transmission of a first media stream and receipt of a second media stream, and a media control channel can optionally be implemented. The mobile device can acquire Internet access through a second IP address, and packets routed between the second IP address and the Internet may traverse a NAT router. The mobile device can evaluate the type of NAT at the second IP address from a stored LAN profile. A software routine can determine that handover of the media session from the first IP address to the second IP address is preferred. A software routine can determine efficient handover procedures according to Network handover rules. The mobile device may begin transmitting a third media stream to the corresponding node and the corresponding node can transmit a fourth media stream to the second IP address. A media control channel is optionally supported.
Owner:GOOGLE LLC

Adaptive quality-of-service reservation and pre-allocation for mobile systems

In the field of Quality-of-Service (QoS) management for adaptive real-time services running on mobile devices which support different access technologies in dynamic wireless Internet Protocol (IP) networks, the connectivity of the applied nodes is unpredictable time-varying. In this context, a QoS management unit (304) is proposed that allows adaptive applications with real-time requirements in typical mobile wireless scenarios—e.g. a radio link with a changing transmission quality and handover procedures (2900)—to adaptively and responsively react to a time-varying network topology and different radio link characteristics. Said QoS management unit (304) provides methods of pre-allocating, reserving, monitoring and adapting QoS-related parameters in a dynamic mobile environment.The QoS management unit (304) comprises at least one analysis unit (306) which evaluates QoS requests received from other nodes (402a / b, 404) to inform the application unit (328) of said mobile terminal (208) about the current QoS situation, at least one processing unit (312) that manages request messages (1200, 2000, 2400) for each type of QoS request, at least one monitoring unit (318) which monitors the current QoS situation within said mobile node (208) and initiates requests by activating the processing unit (312), and at least one generation unit (322) which is responsible for generating QoS requests or passing them on to the QoS management units (304) of other nodes (402a+b, 404).
Owner:SONY DEUT GMBH

QoS-awar handover procedure for IP-based mobile ad-hoc network environments

The invention targets at a QoS-aware handover procedure in a typical dynamic mobile ad-hoc scenario (cf. FIGS. 23 to 27) wherein the connectivity of fixed (AR1, AR2, CN) and/or mobile nodes (MN, M1, M2, M3, M4, EN1, EN2) is unpredictably time-varying and, due to the mobility of mobile nodes, handovers will inevitably frequently occur. Thereby, resources are pre-allocated along potential routing paths in advance, and the flow traffic is redirected to the path having the best available QoS capabilities. According to the new QoS situation of the selected path, adaptive real-time applications can have the opportunity to individually adjust traffic generation. With this concept, packet loss can be avoided and degradation effects on the running real-time application during the QoS-aware handover can be minimized. The QoS-aware handover procedure comprises the steps of handover candidates selection, handover initiation, QoS metrics probing and resource pre-allocation (soft reservation), QoS metrics collection, handover decision, handover confirmation (hard reservation), and reservation release. In particular, the proposed solution thereby pertains to a method for proactively probing the QoS situation of each potential routing path, pre-allocating resources along the best available QoS path before the handover of the QoS data flow to be transmitted to a new access point (AP) is initiated, providing efficient resource reservation management and maintenance within the underlying mobile ad-hoc networks and incorporating advanced QoS support features offered by adaptive real-time applications. The invention further proposes an "information dissemination" approach, which optimizes prior-art address resolution mechanisms.
Owner:SONY DEUT GMBH

Method of performing handover by using different handover parameters for different traffic and user classes in a communication network

The present invention relates to a method for performing handover in a communication network, wherein communication with a subscriber terminal (UE) having subscribed to said network is performed by the intermediate of at least one network entity (Node B) handling the communication of said subscriber terminal, upon a change of a communication state for said subscriber terminal within said network, which fulfills a predetermined handover trigger condition, a handover procedure is performed under control of a control entity (RNC) of the communication network, a handover procedure is defined by a handover signaling scenario (HO, HHO, SHO, SSTD) and at least one set of handover parameters per signaling scenario, the handover parameters define a respective handover trigger condition, a communication with a subscriber terminal belongs to a specific one of a plurality of traffic classes, and wherein at least one user class is defined per traffic class, the method comprising the steps of configuring a set of handover parameters and a handover signaling scenario per user class, and performing, upon detection that said handover trigger condition is fulfilled, the handover procedure for said subscriber terminal as defined by the configured handover signaling scenario and the configured set of handover parameters for the respective user class of the respective traffic class.
Owner:NOKIA TECHNOLOGLES OY

Efficient handover of media communications in heterogeneous IP networks using LAN profiles and network handover rules

Methods and systems are provided for efficient handover of a media session between heterogeneous Internet Protocol (IP) networks. A mobile device with Internet access can operate a software program to communicate with a corresponding node. The corresponding node may access the Internet through either a Network Address Translation (NAT) router or a firewall. The mobile device establishes a media session with a corresponding node via the transmission of a first media stream and receipt of a second media stream, and a media control channel can optionally be implemented. The mobile device can acquire Internet access through a second IP address, and packets routed between the second IP address and the Internet may traverse a NAT router. The mobile device can evaluate the type of NAT at the second IP address from a stored Local Area Network (LAN) profile. A software routine can determine that handover of the media session from the first IP address to the second IP address is preferred. A software routine can determine efficient handover procedures according to Network handover rules. The mobile device may begin transmitting a third media stream to the corresponding node and the corresponding node can transmit a fourth media stream to the second IP address. A media control channel is optionally supported.
Owner:GOOGLE LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products