QoS-awar handover procedure for IP-based mobile ad-hoc network environments

Inactive Publication Date: 2004-11-18
SONY DEUT GMBH
View PDF5 Cites 149 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

0039] The proposed solution of the present invention is basically dedicated to a QoS-aware handover procedure in a typical dynamic mobile ad-hoc scenario wherein the connectivity of the applied devices is unpredictably time-varying and, due to the mobility of mobile nodes, handovers will inevitably frequently occur. Thereby, resources are pre-allocated along potential routing paths in advance, and the flow traffic is redirected to the path having the best available QoS capabilities. According to the new QoS situation of the selected

Problems solved by technology

This leads to poor network utilization since reserved resources are not used.
Although INSIGNIA supports fast reservation, restoration, and end-to-end adaptation, it is not yet supported in any existing router implementation.
Another issue is the question whether a network s

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • QoS-awar handover procedure for IP-based mobile ad-hoc network environments
  • QoS-awar handover procedure for IP-based mobile ad-hoc network environments
  • QoS-awar handover procedure for IP-based mobile ad-hoc network environments

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0092] In the following, the preferred embodiment of the present invention as depicted in FIGS. 1 to 37 and the particular steps of the handover procedure according to the present invention shall be explained in detail. The meaning of the symbols designated with reference numerals and signs in these figures can be taken from Table 2.

[0093] 1. Handover candidates selection

[0094] The proposed QoS-aware handover procedure is designed to be independent of access technologies based on the data link layer (layer 2). It can be triggered by data link layer (layer 2), network layer (layer 3) events or an explicit request generated by an application.

[0095] The quality of a wireless connection mainly depends on a factor indicating the strength of a received signal (RSS). It shall be presumed that aside from the MAC address a low-level parameter indicating the link quality (such as RSS) is submitted within the received BEACON signals. Based on these BEACON signals, a mobile node MN is capable o...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention targets at a QoS-aware handover procedure in a typical dynamic mobile ad-hoc scenario (cf. FIGS. 23 to 27) wherein the connectivity of fixed (AR1, AR2, CN) and/or mobile nodes (MN, M1, M2, M3, M4, EN1, EN2) is unpredictably time-varying and, due to the mobility of mobile nodes, handovers will inevitably frequently occur. Thereby, resources are pre-allocated along potential routing paths in advance, and the flow traffic is redirected to the path having the best available QoS capabilities. According to the new QoS situation of the selected path, adaptive real-time applications can have the opportunity to individually adjust traffic generation. With this concept, packet loss can be avoided and degradation effects on the running real-time application during the QoS-aware handover can be minimized. The QoS-aware handover procedure comprises the steps of handover candidates selection, handover initiation, QoS metrics probing and resource pre-allocation (soft reservation), QoS metrics collection, handover decision, handover confirmation (hard reservation), and reservation release. In particular, the proposed solution thereby pertains to a method for proactively probing the QoS situation of each potential routing path, pre-allocating resources along the best available QoS path before the handover of the QoS data flow to be transmitted to a new access point (AP) is initiated, providing efficient resource reservation management and maintenance within the underlying mobile ad-hoc networks and incorporating advanced QoS support features offered by adaptive real-time applications. The invention further proposes an "information dissemination" approach, which optimizes prior-art address resolution mechanisms.

Description

FIELD AND BACKGROUND OF THE INVENTION[0001] The present invention generally relates to the field of wireless computing in mobile ad-hoc networking environments. More specifically, it is directed to the field of Quality-of-Service (QoS) management for adaptive real-time services running on mobile devices, which support different access technologies in dynamic Internet Protocol (IP)based mobile ad-hoc networks where the connectivity of interconnected fixed and / or mobile nodes is unpredictably time-varying. In this connection, the invention presents different methods for a QoS-aware handover procedure based on resource probing, pre-allocating, reserving, and adaptation mechanisms in a typical dynamic mobile ad-hoc scenario. Moreover, the invention proposes an "information dissemination" approach which optimizes prior-art address resolution mechanisms, in particular in a dynamic mobile ad-hoc environment.[0002] Mobile ad-hoc networks, which have been the focus of many recent research an...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): H04L12/56
CPCH04W36/26H04W84/18
Inventor RIEDEL, MATTHIASXU, YIGANG
Owner SONY DEUT GMBH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products