Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

751 results about "Address resolution" patented technology

The term address resolution refers to the process of finding an address of a computer in a network. The address is "resolved" using a protocol in which a piece of information is sent by a client process executing on the local computer to a server process executing on a remote computer.

System and method for distributing information via a communication network

A communication system for distributing information via a network to one or more subscribers includes a multi-port switch, one or more radio frequency (RF) modems coupled to respective ports of the switch, a combiner and a transmitter. The switch forwards source information to the RF modems based on address information. Each RF modem modulates and up converts information from the switch to an RF signal within a respective subscriber channel of the television broadcast spectrum. Each channel is assigned to one or more subscribers, and each subscriber is allocated unshared bandwidth. Each channel may be further divided into unshared bandwidth increments, so that multiple subscribers may share a single channel. The combiner combines modulated information from each RF modem into a combined signal and the transmitter transmits the combined signal to the subscribers via the network. An HFC network including a distribution point and one or more optical nodes is contemplated, each optical node serving a particular geographic area via a corresponding coaxial cable. Each subscriber destination includes a gateway device or the like that is tuned to a corresponding channel to retrieve source information from that channel, and to deliver the information to one or more local subscriber devices. The gateway further includes converters, a modulator and an up converter to receive and transmit subscriber information upstream to the distribution point. The gateways and an address resolution server enforce point to point communications. A bandwidth manager allocates bandwidth and monitors bandwidth usage.
Owner:UBER TECH INC

System and method for using location identity to control access to digital information

A method and apparatus for controlling access to digital information utilizes a location identity attribute that defines a specific geographic location. The location identity attribute is associated with the digital information such that the digital information can be accessed only at the specific geographic location. The location identity attribute further includes a location value and a proximity value. The location value corresponds to a location of an intended recipient appliance of the digital information, and may be further defined in terms of latitude, longitude and altitude dimensions. The location identity attribute is enforced by allowing access to the digital information only at the specific geographic location. As a first part of this enforcement process, the location of an appliance through which access to the digital information is sought is identified. The appliance location is then compared to the specific geographic location defined by the location identity attribute, and access to the digital information is allowed only if the appliance location falls within the specific geographic location. There are many ways to identify the location of the appliance, including: (1) resolving the appliance location from a street address for the appliance; (2) retrieving the appliance location from a file stored within the appliance; (3) recovering the appliance location from a GPS receiver embedded in the appliance; and (4) recovering the appliance location by triangulating RF signals received by the appliance.
Owner:LONGBEAM TECH LLC

QoS-awar handover procedure for IP-based mobile ad-hoc network environments

The invention targets at a QoS-aware handover procedure in a typical dynamic mobile ad-hoc scenario (cf. FIGS. 23 to 27) wherein the connectivity of fixed (AR1, AR2, CN) and/or mobile nodes (MN, M1, M2, M3, M4, EN1, EN2) is unpredictably time-varying and, due to the mobility of mobile nodes, handovers will inevitably frequently occur. Thereby, resources are pre-allocated along potential routing paths in advance, and the flow traffic is redirected to the path having the best available QoS capabilities. According to the new QoS situation of the selected path, adaptive real-time applications can have the opportunity to individually adjust traffic generation. With this concept, packet loss can be avoided and degradation effects on the running real-time application during the QoS-aware handover can be minimized. The QoS-aware handover procedure comprises the steps of handover candidates selection, handover initiation, QoS metrics probing and resource pre-allocation (soft reservation), QoS metrics collection, handover decision, handover confirmation (hard reservation), and reservation release. In particular, the proposed solution thereby pertains to a method for proactively probing the QoS situation of each potential routing path, pre-allocating resources along the best available QoS path before the handover of the QoS data flow to be transmitted to a new access point (AP) is initiated, providing efficient resource reservation management and maintenance within the underlying mobile ad-hoc networks and incorporating advanced QoS support features offered by adaptive real-time applications. The invention further proposes an "information dissemination" approach, which optimizes prior-art address resolution mechanisms.
Owner:SONY DEUT GMBH

Network address server

A network address server is configured to resolve a target network address name label with a network address, with the target address name label defining a branch of one level of a multi-level network address name space. The network address server is one of a plurality of network address servers each being uniquely associated with a respective region of the address name space level. The network server includes an address name database, and an address name processor in communication with the address name database for providing a response to a query for the network address corresponding to the target address name label. The address name database includes a number of database records, each identifying a unique address name label and a network address uniquely associated with the address name label. The address name processor includes a correlation processor, a correlation transceiver in communication with the correlation processor, and a response processor in communication with the correlation processor and the correlation transceiver. The correlation processor is configured to determine a correlation between the target address name label and the respective unique address name region. The correlation transceiver is configured to provide the other network address servers with a respective indication of the determined correlation and for receiving a corresponding correlation indication from at least one of the other network address servers. The response processor is configured to provide a response to the query in accordance with the correlation indications.
Owner:AFILIAS LTD

Enhanced mobility and address resolution in a wireless premises based network

A premises based wireless network having a multi-segment wired network and a plurality of wireless access points connected to the wired network. The wired network operates according to a wired network protocol which may be the Internet Protocol. Wireless terminals communicate with the wireless access points according to a wireless network protocol, inconsistent with the wired network protocol. Each of the wireless terminals has a wired network address corresponding to one of the wireless access points. Each wireless terminal also has an address according to the wired network protocol. As the wireless terminals roam throughout the premises, protocol tunnels route communications between wireless terminals, thereby preserving communications while roaming by allowing the wireless terminals to retain their wired network addresses during the ongoing communications. The wireless terminals are connected to wireless access points. These wireless access points are in turn linked by data link tunnels to a root access point for a subnet. The data link tunnels enable the root access point for a subnet to forward data to the wireless access points. The forwarded data is not bridged onto the particular subnet that connects the wireless access point and the root access point for that subnet.
Owner:MEIER ROBERT C
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products