Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

16404 results about "Manet routing" patented technology

Abstract: Ad hoc On-demand Distance Vector routing (AODV) is a widely adopted network routing protocol for Mobile Ad hoc Network (MANET). The design of AODV, however, paid little attention to security considerations, hence resulting in the vulnerability of such MANET to the black hole attack.

Wide-area content-based routing architecture

Content networking is an emerging technology, where the requests for content accesses are steered by "content routers" that examine not only the destinations but also content descriptors such as URLs and cookies. In the current deployments of content networking, "content routing" is mostly confined to selecting the most appropriate back-end server in virtualized web server clusters. This invention presents a novel content-based routing architecture that is suitable for global content networking. In this content-based routing architecture, a virtual overlay network called the "virtual content network" is superimposed over the physical network. The content network contains content routers as the nodes and "pathways" as links. The content-based routers at the edge of the content network may be either a gateway to the client domain or a gateway to the server domain whereas the interior ones correspond to the content switches dedicated for steering content requests and replies. The pathways are virtual paths along the physical network that connect the corresponding content routers. The invention is based on tagging content requests at the ingress points. The tags are designed to incorporate several different attributes of the content in the routing process. The path chosen for routing the request is the optimal path and is chosen from multiple paths leading to the replicas of the content.
Owner:TELECOMM RES LAB

Geographic location using multiple location estimators

A location system is disclosed for commercial wireless telecommunication infrastructures. The system is an end-to-end solution having one or more location centers for outputting requested locations of commercially available handsets or mobile stations (MS) based on, e.g., CDMA, AMPS, NAMPS or TDMA communication standards, for processing both local MS location requests and more global MS location requests via, e.g., Internet communication between a distributed network of location centers. The system uses a plurality of MS locating technologies including those based on: (1) two-way TOA and TDOA; (2) pattern recognition; (3) distributed antenna provisioning; and (4) supplemental information from various types of very low cost non-infrastructure base stations for communicating via a typical commercial wireless base station infrastructure or a public telephone switching network. Accordingly, the traditional MS location difficulties, such as multipath, poor location accuracy and poor coverage are alleviated via such technologies in combination with strategies for: (a) automatically adapting and calibrating system performance according to environmental and geographical changes; (b) automatically capturing location signal data for continual enhancement of a self-maintaining historical data base retaining predictive location signal data; (c) evaluating MS locations according to both heuristics and constraints related to, e.g., terrain, MS velocity and MS path extrapolation from tracking and (d) adjusting likely MS locations adaptively and statistically so that the system becomes progressively more comprehensive and accurate. Further, the system can be modularly configured for use in location signaling environments ranging from urban, dense urban, suburban, rural, mountain to low traffic or isolated roadways. Accordingly, the system is useful for 911 emergency calls, tracking, routing, people and animal location including applications for confinement to and exclusion from certain areas.
Owner:TRACBEAM

System providing internet access management with router-based policy enforcement

A computing environment with methods for monitoring access to an open network such as the Internet, is described. The system includes one or more client computers, each operating applications (e.g., Netscape Navigator or Microsoft Internet Explorer) requiring access to an open network, such as a WAN or the Internet, and a router or other equipment that serves a routing function (e.g., a cable modem) for the client computers. A centralized security enforcement module on the router maintains access rules for the client computers and verifies the existence and proper operation of a client-based security module on each client computer. The router-side security module periodically sends out a router challenge via Internet broadcast to the local computers on the network. If the client-side security module is installed and properly operating, the client-side security module responds to the router challenge. The responses received by the router-side security module are maintained in a table. Each time the router receives a request from a client computer to connect to the Internet, the router-side security module reviews the table and analyzes whether or not the computer requesting a connection to the Internet properly responded to the most recent router challenge. If it determines that the computer has properly responded to the router challenge, then it permits the computer to connect to the Internet. If a computer has not properly responded or if a computer has not answered the router challenge, then the computer is not allowed to connect to the Internet as requested.
Owner:CHECK POINT SOFTWARE TECH INC

Integrated customer web station for web based call management

A Web-based call routing management workstation application which allows authorized customers to control toll free routing and monitor call center status. An architecture including one or more web servers located in a firewalled demilitarized zone (DMZ) as communications medium between the customer workstations at the customer sites and the enterprise back-end applications providing the call routing management services, provides a secure infrastructure for accessing the enterprise applications via the otherwise insecure public Internet. The present invention enables creation and management of call by call routing rules by a customer with a workstation having an Internet access and a supported Web browser. The customized rules may be tested and / or debugged via the Web-enabled workstation, using a debugger / tester which runs the routing rules under a simulated environment. In addition, customers may provision hierarchies for their business; create, modify or delete agent pools; manipulate capacity tables; and define quota schemes, value lists and schedule tables, all at the customer site via the Web-enabled workstation. The present invention also enables the customers to view near real-time displays of call center ACD statistics and peg counts based on routing rules, as well as, run provisioning and statistical reports on provisioning and statistical data and also to extract the data for further analysis. Additionally, the present invention supports foreign language and branding features on a graphical user interface. An infrastructure is provided which enables secure initiation, acquisition, and presentation of the call manager functionalities to customers from any computer workstation having a web browser and located anywhere in the world.
Owner:VERIZON PATENT & LICENSING INC

Method for optimal path selection in traversal of packets through network address translators

Reduction of administrative overhead in maintaining network information, rapid convergence on an optimal routing path through the data network, and utilization of only required network resources are realized by a novel method for establishing a call path between network users. The method is based upon deployment of a network information server that stores network topology information and that is addressable by each end user. In this method, the network information server receives a request to establish a call path. The request identifies at least the calling party. In response to the request, the network information server determines a network traversal between the calling party and a root network wherein the network traversal includes call path information about the sub-networks between the calling party and the root network. The request for establishing a call path can also identify the called party. Based on the calling and called party identification, the network information server also determines a second network traversal between the called party and the root network. The second network traversal is sent to either the calling party or the called party or to both the calling and called parties. The server can determine an intersection of the traversals and send the intersection information to the parties. The intersection information is known as a merge point and represents an optimal call path between the parties.
Owner:ALCATEL-LUCENT USA INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products