Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2146 results about "Routing protocol" patented technology

A routing protocol specifies how routers communicate with each other, distributing information that enables them to select routes between any two nodes on a computer network. Routers perform the "traffic directing" functions on the Internet; data packets are forwarded through the networks of the internet from router to router until they reach their destination computer. Routing algorithms determine the specific choice of route. Each router has a prior knowledge only of networks attached to it directly. A routing protocol shares this information first among immediate neighbors, and then throughout the network. This way, routers gain knowledge of the topology of the network. The ability of routing protocols to dynamically adjust to changing conditions such as disabled data lines and computers and route data around obstructions is what gives the Internet its survivability and reliability.

Rerouting in connection-oriented communication networks and communication systems

A Private Network-Network Interface (PNNI) network including interconnected nodes is defined as a single rerouting domain (“global domain”) and the global domain is further defined by multiple divided domains (“local domains”). Each of the local domains is defined to include multiple nodes that are included in the network. Connection recovery and path optimization in the global domain (the entire PNNI network) are performed in accordance with a global rerouting protocol. The global rerouting protocol is a modification of the standard Domain-Based Rerouting (DBR) protocol, by adding information elements of domain identifier, rerouting for the global domain. The DBR protocol does not support the connection recovery from a link failure between local domains (“inter-domains”) and the global path optimization. The global rerouting method is capable of connection recovery and path optimization outside of any rerouting local domains. The global rerouting provides double fault recovery within the rerouting domain (“intra-domain”) as covered by the DBR and outside of the domains (“inter-domain”) or when the initial fault recovery within the domain has failed. Also, the global rerouting method provides maximum path optimization across all domains and within the rerouting local domain.
Owner:RPX CLEARINGHOUSE

Virtual private network (VPN)-aware customer premises equipment (CPE) edge router

A network architecture includes a communication network that supports one or more network-based Virtual Private Networks (VPNs). The communication network includes a plurality of boundary routers that are connected by access links to CPE edge routers belonging to the one or more VPNs. To prevent traffic from outside a customer's VPN (e.g., traffic from other VPNs or the Internet at large) from degrading the QoS provided to traffic from within the customer's VPN, the present invention gives precedence to intra-VPN traffic over extra-VPN traffic on each customer's access link through access link prioritization or access link capacity allocation, such that extra-VPN traffic cannot interfere with inter-VPN traffic. Granting precedence to intra-VPN traffic over extra-VPN traffic in this manner entails partitioning between intra-VPN and extra-VPN traffic on the physical access link using layer 2 multiplexing and configuration of routing protocols to achieve logical traffic separation between intra-VPN traffic and extra-VPN traffic at the VPN boundary routers and CPE edge routers. By configuring the access networks, the VPN boundary routers and CPE edge routers, and the routing protocols of the edge and boundary routers in this manner, the high-level service of DoS attack prevention is achieved.
Owner:VERIZON PATENT & LICENSING INC

Virtual private network (VPN)-aware customer premises equipment (CPE) edge router

A network architecture includes a communication network that supports one or more network-based Virtual Private Networks (VPNs). The communication network includes a plurality of boundary routers that are connected by access links to CPE edge routers belonging to the one or more VPNs. To prevent traffic from outside a customer's VPN (e.g., traffic from other VPNs or the Internet at large) from degrading the QoS provided to traffic from within the customer's VPN, the present invention gives precedence to intra-VPN traffic over extra-VPN traffic on each customer's access link through access link prioritization or access link capacity allocation, such that extra-VPN traffic cannot interfere with inter-VPN traffic. Granting precedence to intra-VPN traffic over extra-VPN traffic in this manner entails partitioning between intra-VPN and extra-VPN traffic on the physical access link using layer 2 multiplexing and configuration of routing protocols to achieve logical traffic separation between intra-VPN traffic and extra-VPN traffic at the VPN boundary routers and CPE edge routers. By configuring the access networks, the VPN boundary routers and CPE edge routers, and the routing protocols of the edge and boundary routers in this manner, the high-level service of DoS attack prevention is achieved.
Owner:VERIZON PATENT & LICENSING INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products