Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2360 results about "Packet forwarding" patented technology

Packet forwarding is the relaying of packets from one network segment to another by nodes in a computer network. The network layer in the OSI model is responsible for packet forwarding.

Policy based quality of service

A flexible, policy-based, mechanism for managing, monitoring, and prioritizing traffic within a network and allocating bandwidth to achieve true quality of service (QoS) is provided. According to one aspect of the present invention, a method is provided for managing bandwidth allocation in a network that employs a non-deterministic access protocol, such as an Ethernet network. A packet forwarding device receives information indicative of a set of traffic groups, such as: a MAC address, or IEEE 802.1p priority indicator or 802.1Q frame tag, if the QoS policy is based upon individual station applications; or a physical port if the QoS policy is based purely upon topology. The packet forwarding device additionally receives bandwidth parameters corresponding to the traffic groups. After receiving a packet associated with one of the traffic groups on a first port, the packet forwarding device schedules the packet for transmission from a second port based upon bandwidth parameters corresponding to the traffic group with which the packet is associated. According to another aspect of the present invention, a method is provided for managing bandwidth allocation in a packet forwarding device. The packet forwarding device receives information indicative of a set of traffic groups. The packet forwarding device additionally receives information defining a QoS policy for the traffic groups. After a packet is received by the packet forwarding device, a traffic group with which the packet is associated is identified. Subsequently, rather than relying on an end-to-end signaling protocol for scheduling, the packet is scheduled for transmission based upon the QoS policy for the identified traffic group.
Owner:ARISTA NETWORKS

Multi-service network switch

A multi-service network switch capable of providing multiple network services from a single platform. The switch incorporates a distributed packet forwarding architecture where each of the various cards is capable of making independent forwarding decisions. The switch further allows for dynamic resource management for dynamically assigning modem and ISDN resources to an incoming call. The switch may also include fault management features to guard against single points of failure within the switch. The switch further allows the partitioning of the switch into multiple virtual routers where each virtual router has its own set of resources and a routing table. Each virtual router is further partitioned into virtual private networks for further controlling access to the network. The switch supports policy based routing where specific routing paths are selected based on a domain name, a telephone number, and the like. The switch also provides tiered access of the Internet by defining quality of access levels to each incoming connection request. The switch may further support an IP routing protocol and architecture in which the layer two protocols are independent of the physical interface they run on. Furthermore, the switch includes a generic forwarding interface software for hiding the details of transmitting and receiving packets over different interface types.
Owner:ALCATEL LUCENT SAS

Scalable protection mechanism for hierarchical multicast service in ring based networks

A novel fast and scalable protection mechanism for protecting hierarchical multicast service in ring based networks. The mechanism of the present invention is especially suitable for use in Multi-Protocol Label Switching (MPLS) ring based networks such as Metro Ethernet Networks (MENs). The mechanism provides fast protection for MPLS based point-to-multipoint (P2MP) Label Switched Paths (LSPs) in a scalable manner. Each multicast connection on each ring in the network is split into two sub-LSPs: a primary P2MP sub-LSP originating on a primary node and a secondary P2MP sub-LSP originating on a secondary node traveling opposite to the primary path. For each node to be protected, a point-to-point protection tunnel is provisioned from that node to a secondary node that forwards the packets to the secondary path on all child rings connected to that parent ring through the protected node and that are provisioned to receive the specific multicast connection. In the event of a failure, all the multicast traffic on that ring is directed through the protection tunnel to the secondary node. Upon exiting the protection tunnel, the packets are forwarded to the secondary LSP on the child rings for which this node is the secondary node and also continue along the primary LSP on the parent ring and along all child rings for which this node is the primary node.
Owner:NOKIA SIEMENS NETWORKS ETHERNET SOLUTIONS +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products