Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

586 results about "Porous network" patented technology

Controlled architecture ceramic composites by stereolithography

A process for producing a ceramic composite having a porous network. The process includes providing a photocurable ceramic dispersion. The dispersion consists of a photocurable polymer and a ceramic composition. The surface of the dispersion is scanned with a laser to cure the photocurable polymer to produce a photocured polymer / ceramic composition. The photocured composition useful as a polymer / ceramic composite, or the polymer phase can be removed by heating to a first temperature that is sufficient to burn out the photocured polymer. It is then heated to a second temperature that is higher than the first temperature and is sufficient to sinter the ceramic composition to produce a purely ceramic composition having a porous network.Preferably and more specifically, the process uses a stereolithographic technique for laser scanning. The process can form a high quality orthopedic implant that dimensionally matches the bone structure of a patient. The technique relies upon laser photocuring a dense colloidal dispersion into a desired complex three-dimensional shape. The shape is obtained from a CAT scan file of a bone and is rendered into a CAD file that is readable by the stereolithography instrument. Or the shape is obtained directly from a CAD file that is readable by the stereolithography instrument.
Owner:UNITED STATES SURGICAL CORP +2

Method for preparing Ag-carrying bacterial cellulose hydrogel antimicrobial dressing and product thereof

The invention discloses a method for preparing an Ag-carrying bacterial cellulose hydrogel antimicrobial dressing and a product thereof. The method comprises the following steps of: soaking a bacterial cellulose hydrogel film in solution of silver metal precursor; then heating the film to be between 121 and 135 DEG C in a high-pressure sterilizing pot, and pressurizing between 0.205 and 0.313MPa; standing bacterial cellulose for 5 to 30min; and then taking the treated bacterial cellulose out for washing, partial dehydration, packaging and sterilization to obtain an Ag-carrying bacterial cellulose hydrogel antimicrobial dressing which is formed by compounding silver metal nano-particles and bacterial cellulose and is attached with 0.01 to 10 weight percent of the silver metal nano-particles in a bacterial cellulose three-dimensional porous network structure. The preparation process of the invention has the advantages of simplicity, easiness, convenient operation, controllable preparation technology, no pollution and low cost; and the prepared nano-particles have the advantages of high purity, small particle size, uniform size and good dispersity. The obtained Ag-carrying bacterial cellulose hydrogel antimicrobial dressing has the characteristics of good antimicrobial property, high water content, good water-retaining property, strong toughness, good air permeability and the like, and can meet the requirements of treating various wounds by a wet method.
Owner:DONGHUA UNIV +1

Graphene aerogel intelligent phase-change fiber, and preparation method and application thereof

The invention discloses a graphene aerogel intelligent phase-change fiber, and a preparation method and an application thereof. The graphene aerogel intelligent phase-change fiber comprises graphene aerogel fiber, a phase-change material and a hydrophobic coating layer, wherein the graphene aerogel fiber has a continuous graphene three-dimensional porous network structure formed by overlapping ofgraphene lamellas; the phase-change material is wrapped on the graphene lamellas, and fills and is embedded into the three-dimensional porous network structure; and the hydrophobic coating layer uniformly coats the surface of the graphene aerogel fiber. The graphene aerogel intelligent phase-change fiber provided by the invention has the advantages of excellent electrical properties, flexibility and hydrophobic properties, adjustable phase-change material loading capacity, thermal enthalpy value and melting point, and good application in the aspects of phase-change energy storage, photothermalconversion and storage, and electrothermal conversion and storage; meanwhile, the preparation process provided by the invention is simple, has mild and controllable reaction conditions, is green andpollution-free, is applicable to large-scale production and has extensive application prospects.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI

Three-dimensional network graphene for lithium battery and preparing method thereof

The invention relates to three-dimensional network graphene for a lithium battery and a preparing method thereof. The preparing method of the three-dimensional network graphene for the lithium battery comprises the steps that firstly, high-purity expanded graphite, an anion type organic surface active agent, a dispersing agent, an antifoaming agent and a solvent are fully mixed, so that thick few-layer graphene slurry is obtained; liquid swelling high polymer materials are added, composite slurry is obtained after even mixing, and the composite slurry is coated in holes of porous foam materials; finally, the porous foam materials are fully carbonized and then are further processed, so that three-dimensional network graphene powder is obtained. The graphene prepared through the method is of a porous network structure on the microscopic scale, and thus the graphene is high in specific surface area, high in conductivity, high in heat conductivity and good in electrolyte wettability; when the graphene is mixed into positive electrode and negative electrode materials of the lithium battery for manufacturing pole pieces, the electron conduction can be effectively improved, the internal resistance of the battery can be greatly lowered, the amount of heat generated when the battery is charged and discharged is educed, the power density, the energy density and the safety of the battery are further improved, and the service life of the battery is prolonged.
Owner:XIAMEN KNANO GRAPHENE TECH CORP

Method for preparing metal nanoparticle composite bacterial cellulose and products thereof

The invention particularly relates to a method for preparing metal nanoparticle composite bacterial cellulose and products thereof, and belongs to the composite field of metallic nanomaterials and biopolymer materials. The method comprises the following steps: soaking the bacterial cellulose into solution of metal precursor; then, heating the solution in a high-pressure vessel to 121 to 150 DEG C, pressurizing the solution to 0.205 and 0.476MPa, and standing the solution for 5 to 30 minutes; and taking the treated bacterial cellulose out for washing and drying to obtain the metal nanoparticle composite bacterial cellulose attached with 0.01 to 10 weight percent of metal nanoparticles in a bacterial cellulose three-dimensional porous network structure, which is compounded by the metal nanoparticles and the bacterial cellulose. The method has simple and easy preparation process, convenient operation, controllable preparation technology, no pollution and low cost; the prepared nanoparticles have high purity, small diameter of nanoparticles, uniform size and good dispersibility; and the method realizes controllable preparation of sizes and distribution of the nanoparticles by simply changing experiment conditions, and has wide application value in the field of industrialized production.
Owner:DONGHUA UNIV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products