Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

5511 results about "Gallium nitride" patented technology

Gallium nitride (GaN) is a binary III/V direct bandgap semiconductor commonly used in light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure. Its wide band gap of 3.4 eV affords it special properties for applications in optoelectronic, high-power and high-frequency devices. For example, GaN is the substrate which makes violet (405 nm) laser diodes possible, without use of nonlinear optical frequency-doubling.

Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures

A light emitting diode is provided having a Group III nitride based superlattice and a Group III nitride based active region on the superlattice. The active region has at least one quantum well structure. The quantum well structure includes a first Group III nitride based barrier layer, a Group III nitride based quantum well layer on the first barrier layer and a second Group III nitride based barrier layer. A Group III nitride based semiconductor device and methods of fabricating a Group III nitride based semiconductor device having an active region comprising at least one quantum well structure are provided. The quantum well structure includes a well support layer comprising a Group III nitride, a quantum well layer comprising a Group III nitride on the well support layer and a cap layer comprising a Group III nitride on the quantum well layer. A Group III nitride based semiconductor device is also provided that includes a gallium nitride based superlattice having at least two periods of alternating layers of InXGa1−XN and InYGa1−YN, where 0≦X<1 and 0≦Y<1 and X is not equal to Y. The semiconductor device may be a light emitting diode with a Group III nitride based active region. The active region may be a multiple quantum well active region.
Owner:CREELED INC

Method of fabricating nitride semiconductor laser

A method of fabricating a nitride semiconductor laser comprises preparing a substrate having a plurality of marker structures and a crystalline mass made of a hexagonal gallium nitride semiconductor. The primary and back surfaces of the substrate intersect with a predetermined axis extending in the direction of a c-axis of the hexagonal gallium nitride semiconductor. Each marker structure extends along a reference plane defined by the c-axis and an m-axis of the hexagonal gallium nitride semiconductor. The method comprises cutting the substrate along a cutting plane to form a wafer of hexagonal gallium nitride semiconductor, and the cutting plane intersects with the plurality of the marker structures. The wafer has a plurality of first markers, each of which extends from the primary surface to the back surface of the wafer, and each of the first markers comprises part of each of the marker structures. The primary surface of the wafer is semipolar or nonpolar. The method comprises growing a number of gallium nitride based semiconductor layers for a semiconductor laser. The method comprises cleaving the substrate product at a cleavage plane of the hexagonal gallium nitride semiconductor, after forming a substrate product in an electrode forming step.
Owner:SUMITOMO ELECTRIC IND LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products