Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1455 results about "Single crystal substrate" patented technology

Single Crystal Substrates. The single crystal substrate material refers to a single crystal wafer for epitaxial growth of a crystal thin film. And the term “epitaxy” refers to another directional growth of another single crystal on the surface of a single crystal under certain conditions.

White color light emitting diode and neutral color light emitting diode

A white color or neutral color LED having an n-type ZnSe single crystal substrate doped with I, Cl, Br, Al, Ga or In as SA-emission centers and an epitaxial film structure including a ZnSe, ZnCdSe or ZnSeTe active layer and a pn-junction. The active layer emits blue or bluegreen light. The SA-emission centers in the ZnSe substrate convert blue or bluegreen light to yellow or orange SA-emission. The blue or bluegreen light from the epitaxial film structure and the yellow or orange light from the ZnSe substrate synthesize white color light or neutral color light between red and blue.
Owner:SUMITOMO ELECTRIC IND LTD

Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film

Disclosed is a natural-superlattice homologous single-crystal thin film, which comprises a complex oxide which is epitaxially grown on either one of a ZnO epitaxial thin film formed on a single-crystal substrate, the single-crystal substrate after disappearance of the ZnO epitaxial thin film and a ZnO single crystal. The complex oxide is expressed by the a formula: M1M2O3 (ZnO)m, wherein M1 is at least one selected from the group consisting of Ga, Fe, Sc, In, Lu, Yb, Tm, Er, Ho and Y, M2 is at least one selected from the group consisting of Mn, Fe, Ga, In and Al, and m is a natural number of 1 or more. A natural-superlattice homologous single-crystal thin film formed by depositing the complex oxide and subjecting the obtained layered film to a thermal anneal treatment can be used in optimal devices, electronic devices and X-ray optical devices.
Owner:HOYA CORP +1

GaN substrate and method of fabricating the same, nitride semiconductor device and method of fabricating the same

A GaN substrate comprises a GaN single crystal substrate, an AlxGa1-xN intermediate layer (0<x<=1) epitaxially grown on the substrate, and an GaN epitaxial layer grown on the intermediate layer. The intermediate layer is made of AlGaN and this AlGaN grows over the entire surface of the substrate with contaminants thereon and high dislocation regions therein. Thus, the intermediate layer is normally grown on the substrate, and a growth surface of the intermediate layer can be made flat. Since the growth surface is flat, a growth surface of the GaN epitaxial layer epitaxially grown on the intermediate layer is also flat.
Owner:SUMITOMO ELECTRIC IND LTD

Method of producing a single crystal gallium nitride substrate and single crystal gallium nitride substrate

GaN single crystal substrates are produced by slicing a GaN single crystal ingot in the planes parallel to the growing direction. Penetration dislocations which have been generated in the growing direction extend mainly in the bulk of the GaN substrate. A few of the threading dislocations appear on the surface of the GaN substrate. GaN substrates of low-dislocation density are obtained.
Owner:SUMITOMO ELECTRIC IND LTD

Gallium nitride single crystal substrate and method of proucing same

An n-type GaN substrate having a safe n-type dopant instead of Si which is introduced by perilous silane gas. The safe n-dopant is oxygen. An oxygen doped n-type GaN free-standing crystal is made by forming a mask on a GaAs substrate, making apertures on the mask for revealing the undercoat GaAs, growing GaN films through the apertures of the mask epitaxially on the GaAs substrate from a material gas including oxygen, further growing the GaN film also upon the mask for covering the mask, eliminating the GaAs substrate and the mask, and isolating a freestanding GaN single crystal. The GaN is an n-type crystal having carriers in proportion to the oxygen concentration.
Owner:SUMITOMO ELECTRIC IND LTD

Crystal substrates and methods of fabricating the same

A single crystal substrate and method of fabricating the same are provided. The single crystal substrate includes an insulator having a window exposing a portion of a substrate, a selective epitaxial growth layer formed on the portion of the substrate exposed through the window and a single crystalline layer formed on the insulator and the selective epitaxial growth layer using the selective epitaxial growth layer as an epitaxial seed layer.
Owner:SAMSUNG ELECTRONICS CO LTD

Sic epitaxial wafer and method for manufacturing same

According to the present invention, there is provided an SiC epitaxial wafer which reduces triangular defects and stacking faults, which is highly uniform in carrier concentration and film thickness, and which is free of step bunching, and its method of manufacture. The SiC epitaxial wafer of the present invention is an SiC epitaxial wafer in which an SiC epitaxial layer is formed on a 4H—SiC single crystal substrate that is tilted at an off angle of 0.4°-5°, wherein the density of triangular-shaped defects of said SiC epitaxial layer is 1 defect / cm2 or less.
Owner:SHOWA DENKO KK

Phosphor single crystal substrate and method for preparing the same, and nitride semiconductor component using the same

A light emitting device having a phosphor substrate, which comprises nitride containing at least one element selected from Group XIII (IUPAC 1989) having a general formula XN, wherein X is at least one element selected from B, Al, Ga and In, a general formula XN:Y, wherein X is at least one element selected from B, Al, Ga and In, and Y is at least one element selected from Be, Mg, Ca, Sr, Ba, Zn, Cd and Hg, or a general formula XN:Y,Z, wherein X is at least one element selected from B, Al, Ga and In, Y is at least one element selected from Be, Mg, Ca, Sr, Ba, Zn, Cd and Hg, and Z is at least one element selected from C, Si, Ge, Sn, Pb, O and S. The phosphor substrate is prepared by crystallization from supercritical ammonia-containing solution and the light emitting device is formed by a vapor phase growth on the phosphor substrate so as to obtain a light emitting device which has a wavelength distribution emitting a white light etc. and a good yield.
Owner:AMMONO SP Z O O (PL) +1

Large diffraction grating for gas discharge laser

A grating based line narrowing unit for gas discharge lasers with increased beam expansion to produce smaller bandwidths. The grating has a grating surface larger than 100 cm.sup.2 and is a replica grating produced from a master grating produced with a lithography process on a single crystal substrate. In preferred embodiments, a beam from the chamber of the laser is expanded with four prism beam expanders. The large grating, much larger than gratings historically produced from diamond lined gratings, permit substantial reductions in bandwidth while maintaining laser efficiency. A narrow band of wavelengths in the expanded beam is reflected from a grating in a Littrow configuration back via the bi-directional beam expanders into the laser chamber for amplification.
Owner:CYMER INC

Manufacturing method of single crystal substrate and manufacturing method of internal modified layer-forming single crystal member

It is an object of the present invention to provide a manufacturing method of a single crystal substrate and to provide an internal modified layer-forming single crystal member, each of which is capable of easily manufacturing a relatively large and thin single crystal substrate. The manufacturing method of a single crystal substrate includes: the step of arranging a condensing lens (15), which emits laser beams (B) and corrects aberration caused by a refractive index of a single crystal member (10), contactlessly on the single crystal member (10); the step of irradiating the laser beams onto a surface (10t) of the single crystal member (10), and condensing the laser beams into an inside of the single crystal member; the step of moving the condensing lens (15) and the single crystal member (10) relatively to each other, and forming a two-dimensional modified layer (12) in the inside of the single crystal member (10); and the step of exfoliating a single crystal layer, which is formed by being divided by the modified layer (12), from the modified layer (12), thereby forming a single crystal substrate.
Owner:SHIN-ETSU POLYMER CO LTD +1

Compound semiconductor substrate

A compound semiconductor substrate which inhibits the generation of a crack or a warp and is preferable for a normally-off type high breakdown voltage device, arranged that a multilayer buffer layer 2 in which AlxGa1-xN single crystal layers (0.6≦X≦1.0) 21 containing carbon from 1×1018 atoms / cm3 to 1×1021 atoms / cm3 and AlyGa1-yN single crystal layers (0.1≦y≦0.5) 22 containing carbon from 1×1017 atoms / cm3 to 1×1021 atoms / cm3 are alternately and repeatedly stacked in order, and a nitride active layer 3 provided with an electron transport layer 31 having a carbon concentration of 5×1017 atoms / cm3 or less and an electron supply layer 32 are deposited on a Si single crystal substrate 1 in order. The carbon concentrations of the AlxGa1-xN single crystal layers 21 and that of the AlyGa1-yN single crystal layers 22 respectively decrease from the substrate 1 side towards the above-mentioned active layer 3 side. In this way, the compound semiconductor substrate is produced.
Owner:COORSTEK INC

Nitride semiconductor heterostructures and related methods

Semiconductor structures and devices based thereon include an aluminum nitride single-crystal substrate and at least one layer epitaxially grown thereover. The epitaxial layer may comprise at least one of AlN, GaN, InN, or any binary or tertiary alloy combination thereof, and have an average dislocation density within the semiconductor heterostructure is less than about 106 cm−2.
Owner:CRYSTAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products