Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

19155 results about "Silicon carbide" patented technology

Silicon carbide (SiC), also known as carborundum /kɑːrbəˈrʌndəm/, is a semiconductor containing silicon and carbon. It occurs in nature as the extremely rare mineral moissanite. Synthetic SiC powder has been mass-produced since 1893 for use as an abrasive. Grains of silicon carbide can be bonded together by sintering to form very hard ceramics that are widely used in applications requiring high endurance, such as car brakes, car clutches and ceramic plates in bulletproof vests. Electronic applications of silicon carbide such as light-emitting diodes (LEDs) and detectors in early radios were first demonstrated around 1907. SiC is used in semiconductor electronics devices that operate at high temperatures or high voltages, or both. Large single crystals of silicon carbide can be grown by the Lely method and they can be cut into gems known as synthetic moissanite.

Methods for transferring a useful layer of silicon carbide to a receiving substrate

Methods for transferring a useful layer of silicon carbide to a receiving substrate are described. In an embodiment, the invention relates to a method for recycling of a silicon carbide source substrate by removal of the excess zone followed by a finishing step to prepare the source substrate for recycling and reuse. Preferably, the excess zone is removed by a thermal budget where the temperature and time of such treatment causes exfoliation of the excess zone. The finishing step is performed in a manner to provide the desired surface roughness for the substrate so that it can be recycled for re-use. The technique includes implanting at least H+ ions through a front face of a source substrate of silicon carbide with an implantation energy E greater than or equal to 95 keV and an implantation dose D chosen to form an optimal weakened zone near a mean implantation depth, the optimal weakened zone defining the useful layer and a remainder portion of the source substrate. The method also includes bonding the front face of the source substrate to a contact face of the receiving substrate, and detaching the useful layer from the remainder portion of the source substrate along the weakened zone while minimizing or avoiding forming an excess zone of silicon carbide material at the periphery of the useful layer that was not transferred to the receiving substrate during detachment.
Owner:SOITEC SA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products