Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2697results about How to "Improve crystal quality" patented technology

Semiconductor laser diode

An inventive semiconductor laser diode includes a Group III nitride semiconductor layered structure having a major crystal growth plane defined by a non-polar or semi-polar-plane. The Group III nitride semiconductor layered structure includes: a p-type cladding layer and an n-type cladding layer; an In-containing p-type guide layer and an In-containing n-type guide layer held between the p-type cladding layer and the n-type cladding layer; and an In-containing light emitting layer held between the p-type guide layer and the n-type guide layer.
Owner:ROHM CO LTD

Light emitting devices with layered III-V semiconductor structures

A semiconductor light emitting device is disclosed, including a semiconductor substrate, an active region comprising a strained quantum well layer, and a cladding layer for confining carriers and light emissions, wherein the amount of lattice strains in the quantum well layer is in excess of 2% against either the semiconductor substrate or cladding layer and, alternately, the thickness of the quantum well layer is in excess of the critical thickness calculated after Matthews and Blakeslee.
Owner:RICOH KK

Thin film photovoltaic structure

Systems and methods of production of a photovoltaic device include creating on a donor semiconductor wafer an exfoliation layer and transferring the exfoliation layer to an insulator substrate. One or more finishing processes may be performed before and / or after transferring the exfoliation layer, such as to create a plurality of photovoltaic structure layers. Production of the photovoltaic device further may include subjecting the donor semiconductor wafer to an ion implantation process to create the exfoliation layer, bonding the exfoliation layer to the insulator substrate, and separating the exfoliation layer from the donor semiconductor wafer. Transferring may include forming an anodic bond via electrolysis, such as through the application of heat, pressure and voltage to the exfoliation layer and the insulator structure.
Owner:CORNING INC

Fabrication method of semiconductor wafer

A fabrication method of a semiconductor wafer can fill trenches formed in a semiconductor substrate with an epitaxial film with high crystal quality without leaving cavities in the trenches. The trenches are formed in the first conductivity type semiconductor substrate. Planes exposed inside the trenches are made clean surfaces by placing the substrate in a gas furnace, followed by supplying the furnace with an etching gas and carrier gas, and by performing etching on the exposed planes inside the trenches by a thickness from about a few nanometers to one micrometer. The trenches have a geometry opening upward through the etching. Following the etching, a second conductivity type semiconductor is epitaxially grown in the trenches by supplying the furnace with a growth gas, etching gas, doping gas and carrier gas, thereby filling the trenches. Instead of making the trenches slightly-opened upward, their sidewalls may be made planes enabling facet formation.
Owner:FUJI ELECTRIC CO LTD

Semiconductor substrate made of group III nitride, and process for manufacture thereof

To provide a semiconductor substrate of a group III nitride with low defect density and little warp, this invention provides a process comprising such steps of: forming a GaN layer 2 on a sapphire substrate 1 of the C face ((0001) face); forming a titanium film 3 thereon; heat-treating the substrate in an atmosphere containing hydrogen gas or a gas of a compound containing hydrogen to form voids in the GaN layer 2; and thereafter forming a GaN layer 4 on the GaN layer 2'.
Owner:SUMITOMO CHEM CO LTD

Phosphor single crystal substrate and method for preparing the same, and nitride semiconductor component using the same

A light emitting device having a phosphor substrate, which comprises nitride containing at least one element selected from Group XIII (IUPAC 1989) having a general formula XN, wherein X is at least one element selected from B, Al, Ga and In, a general formula XN:Y, wherein X is at least one element selected from B, Al, Ga and In, and Y is at least one element selected from Be, Mg, Ca, Sr, Ba, Zn, Cd and Hg, or a general formula XN:Y,Z, wherein X is at least one element selected from B, Al, Ga and In, Y is at least one element selected from Be, Mg, Ca, Sr, Ba, Zn, Cd and Hg, and Z is at least one element selected from C, Si, Ge, Sn, Pb, O and S. The phosphor substrate is prepared by crystallization from supercritical ammonia-containing solution and the light emitting device is formed by a vapor phase growth on the phosphor substrate so as to obtain a light emitting device which has a wavelength distribution emitting a white light etc. and a good yield.
Owner:AMMONO SP Z O O (PL) +1

Method for enhancing antistatic ability of GaN-based light-emitting diode

The invention discloses a method for enhancing the antistatic ability of GaN-based light-emitting diode. The epitaxial wafer structure of the light-emitting diode sequentially comprises an underlay, alow-temperature buffer layer, an unadulterated GaN high-temperature buffer layer, an aluminum gallium nitride / GaN superlattice structure, the unadulterated GaN high-temperature buffer layer, an N type contact layer, an N type GaN conductive layer, a light-emitting layer multiple quantum well structure MQW, a P type aluminum gallium nitride electric barrier layer, a P type GaN conductive layer and a P type contact layer in a sequence from down to up. In the invention, the aluminum gallium nitride / GaN superlattice periodic structure is inserted in the unalloyed GaN high temperature buffer layer. The insertion of the aluminum gallium nitride / GaN superlattice periodic structure can effectively improve crystal quality of materials, thereby enhancing the antistatic ability of the GaN-based light-emitting diode and improving the reliability and the stability of devices.
Owner:HC SEMITEK CORP

Large Area, Low-Defect Gallium-Containing Nitride Crystals, Method of Making, and Method of Use

An ultralow defect gallium-containing nitride crystal and methods of making ultralow defect gallium-containing nitride crystals are disclosed. The crystals are useful as substrates for light emitting diodes, laser diodes, transistors, photodetectors, solar cells, and photoelectrochemical water splitting for hydrogen generators.
Owner:SLT TECH

Method for preparing nano-scale pattern substrate for nitride epitaxial growth

The invention relates to the semiconductor technical field and discloses a method for manufacturing a nanometer pattern substrate used for the epitaxial growth of a nitride. The method comprises the followings steps: settling a layer of silicon dioxide or silicon nitride film on a substrate used for the epitaxial growth of the nitride; the silicon dioxide or silicon nitride film is coated with a layer of thin metal layer through vapor deposition; conducting the annealing heat treatment, and forming uniformly distributed nano-scaled metal particles; utilizing the formed nano-scaled metal particles as masks to etch the silicon dioxide or silicon nitride film so as to form a nanometer pattern structure; using the silicon dioxide or silicon nitride film with the nanometer pattern structure as a mask etching substrate to transfer the nanometer pattern structure of the substrate; and etching to remove the silicon dioxide or silicon nitride film, cleaning the substrate, and obtaining the nanometer pattern substrate. The invention can reduce the dislocation density in the epitaxial layer of the nitride, improve the crystal quality of epitaxial materials, improve the performance of devices and help to realize the scaled and large area manufacture.
Owner:UNILUMIN GRP

Deep-UV light-emitting diode and preparation method thereof

The invention provides a deep-UV light-emitting diode and a preparation method thereof. A low-temperature GaN insertion layer is used to replace an AlN / AlGaN superlattice or a high-temperature GaN insertion layer to grow the deep-UV light-emitting diode. The low-temperature GaN insertion layer is a GaN with thickness of 20-50nm under the conditions of temperature being 400-900 DEG C, pressure being 30-200torr, and V / III being 1500-2500. The method can effectively lower the dislocation density in an epitaxial AlGaN layer and a quantum well, and improves the surface planeness. The prepared LED component has smooth surface, better crystal quality, starting voltage reduction, and smaller serial resistances of the component; and the electroluminescene peak value is ranged from 300nm to 370nm.
Owner:PEKING UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products